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Abstract 

 
China has undertaken massive investments in its surface transportation system 

since the early 1990s, continuing to the present day.  We study the impact of these public 

investments on plant productivity and resource allocation efficiency.  We first collect and 

geocode highly detailed data on China’s highway, railway and waterway transport system 

and its expansion in recent decades. We integrate these transport system data with 

longitudinal data on the location, inputs and outputs of nearly a half million manufacturing 

plants. We find that resource allocation is inefficient in China as unproductive units occupy 

more resources. Not surprisingly perhaps, plants in closer proximity to high-quality 

transport are more productive than otherwise comparable plants. Using a quasi-

experimental approach, we find that productivity rises and its cross-plant dispersion falls 

with improvements in local transportation infrastructure.  While plant entry and exit play 

an important role in these productivity responses, results suggest that exit and entry in 

China are inefficient and distorted. Among continuers, plants with relatively high total 

factor productivity (TFP) before treatment expand relative input usage after treatment. 

These and other results indicate that better access to transportation intensifies market 

competition, selects against less productive plants, facilitates the entry of new plants, and 

promotes the reallocation of factor inputs to relatively productive plants.  
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1. Introduction  

China has undertaken massive investments in its surface transportation system since 

1997, continuing to the present day.  In the year 2016 alone, China invested 1.5 trillion CNY 

into road and railroad construction. Figure 1 in the Appendix summarizes the tremendous 

expansion in key aspects of China’s transportation infrastructure from 1993 to 2013, 

including motorways, national Highways, railways, high-speed railways, and waterways.  

Specifically, Panels A and B depict the enormous growth in its National Trunk Highway 

System (NTHS); Panels C and D show the expansion of its major freight railways and high-

speed passenger rail service; and Panels E and F show major navigable waterways.  In a 

highlight, over the period from 1993 to 2013, among the 34,899 zip codes in China, 

expansion of the NTHS directly impacted 8,418 of them per year and 92% of the total over 

the 11-year span. These figures are measured in the sense that the locations are served by 

newly built segments of the NTHS, with a 25-km distance from the zip code enter point.  

We investigate how this enormous expansion and improvement in China’s surface 

transportation system affected productivity and resource allocation in its manufacturing 

sector. In doing so, we bring three contributions to the literature and the academic 

community.  

First, we collect an extensive body of geospatial data on China’s surface transportation 

system from 1993 to 2014 and digitize it into a form that supports detailed quantitative 

analysis by ourselves and others.  We also digitize information about onramps and 

offramps to the major highways and rail stations, new additions of highways, speed 

improvement of railways, and new introduction of high-speed railways.  

Second, we collect and verify the geolocation of the half million manufacturing plants 

covered in Chinese census data from 1998 to 2013. This geolocation data allow us to 

combine our geospatial data with the longitudinal data on manufacturing plants to measure 

their direct access and distance to the nearest access to any major surface transportation, 

enabling us to study the effects of China’s expanding transport system on productivity and 

factor allocation in the manufacturing sector.  

Third, to the best of our knowledge, this paper is one of the first few to examine the 

channels through which highways affect firm and aggregate productivity growth and 

allocative efficiency. Previous research focuses on whether a road or railroad connection 
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affects GDP or population growth. Ghani, Goswami, and Kerr (2016) examine the effects of 

the Golden Quadrilateral project in India on population, GDP and labor productivity 

without estimating TFP or exploring the channels of productivity gains. Banerjee, Duflo, 

and Qian (2012) and Liu, Sheng, and Yu (2017) examine the impact of China’s highway 

expansion on the level and growth of GDP and exports, respectively. Yang (2016) and 

Huang and Xiong (2018) examine similar questions as ours resulting from the highway 

expansion. However, their measures of transportation cost and market access are at the 

prefecture level. This cost measurement intuitively does not capture the transportation 

price for the plant. Plants that locate within a prefecture with motorways but far away from 

the exit or entry point face considerable costs before reaching the major transportation 

route. Our data enable measurement of each plant’s distance to the nearest access point to 

a major surface transportation.  

By exploring a quasi-natural experiment −the introduction of China’s National Trunk 

Highway System(NTHS), high-speed railway, and the improvements in the railway and the 

waterway systems, this paper investigates the role of transport system improvements on 

industry-level productivity.1 We conjecture that the improvements work through, first, 

selection and reallocation responses that shift factor inputs from less- to more-productive 

plants and, second, productivity gains within plants. We find that TFP increases and 

dispersion decreases over the sample period, especially for industries for which improved 

transportation access is vital. We find that, among the plants that are within a close 

distance to the transportation treatment, those that are situated at a higher position in the 

industry TFP distribution grow faster after that treatment than those situated at a lower 

position. 

 
1 Admittedly, Chinese infrastructure investments are not perfect quasi-experiments. We will apply several 
methods to address the endogeneity issue: to match treatment and control, to impose restrictions on 
qualified events, to use instruments in the difference-in-difference (DD) and triple difference (DDD) analyses. 
In contrast to the straight-line distance as in Banerjee, Duflo, and Qian (2012) and the least-cost path in Faber 
(2014), we will use historical routes as our instrument as Baum-Snow et al. (2017) did. Donaldson (2018) 
uses variation from the gradual rollout of the train network over time and shows that the effects hold above 
and beyond “placebo” rail lines that were planned but not implemented. Placebo comparison is also 
implemented in Donaldson and Hornbeck (2016). However, given the wide coverage of transportation 
changes in China and lack of a “placebo”, it is challenging for us to implement the same strategy. The matching 
and instrumental approaches are likely the best we could do for the Chinese setting.     
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We also investigate exits and new entrants after treatments. We find that, while new 

entrant rates are higher in the treated sample, exit rates are higher in the matched control 

sample. This pattern suggests a reduction in economic activities in the controlled sample. 

We finally decompose the contribution of exits, entrants and reallocation among continuers 

to TFP improvement over the sample period. The results suggest that reallocation and 

within-firm improvement contribute to the overall TFP improvement more than exits and 

new entries.  

Overall, the selection and reallocation responses we find alleviate the misallocation-

based productivity shortfall in China relative to the United States highlighted by Hsieh and 

Klenow (2009). They demonstrate that China and India could gain a 30% to 60% 

improvement in manufacturing TFP if resources could be reallocated at an efficiency level 

similar to that of the United States.   

Our findings are consistent with the work of Syverson (2004a), Raith (2003), and 

others. The within-plant productivity gains associated with transport system 

improvements may arise through the following mechanisms: First, an improved 

transportation system allows for better (or cheaper) access to a wide variety of 

intermediate inputs. Second, the competitive pressure created by a better transportation 

network intensifies incentives to improve managerial quality, or “X-efficiency”. A quasi-

natural experimental setting combined with within-industry difference-in-difference tests 

will allow us to distinguish these theoretical arguments from other demand- and supply- 

side causes, such as technology differences and the industrial policy impacts on 

productivity heterogeneity.  

Extant literature shows some evidence of the association between transportation cost 

and productivity, but there is not a study that has established a direct link between 

infrastructure and allocation efficiency. Syverson (2004a, 2004b) argues that a lower 

transportation cost is associated with a higher density of competition, and therefore a lifted 

lower-bound, higher average productivity levels and less productivity dispersion. The 

mechanism behind this relation is survivorship, not allocation: lowering transportation 

costs increases the substitutability of products, and hence increases competition.  Faber 

(2014) documents that, after the introduction of the national highway system, the growth 

in industrial output decreased in non-targeted peripheral counties because the highways 
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connect metropolitan cities and peripheral large cities. The paper argues for a mechanism 

that lowering transportation cost between large cities intensifies the conglomeration 

process by implicitly assuming that firms in the metropolitan cities have either increasing 

returns to scale or higher marginal profits than others. 

Using the Chinese example is desirable not only because China has the world’s largest 

emerging economy, but also because of its vast regional imbalances in terms of both public 

infrastructure and ubiquitous state interferences that impose serious inefficiencies in the 

allocation of resources and potentially undermine the sustainability of the country’s 

economic development. Infrastructure changes (e.g., access to new highways that reduce 

transportation costs) can correct misallocations that are associated with geographic 

remoteness. However, misallocations on extensive margins (e.g., government credit 

policies) are likely to persist regardless of geographic convenience or density of demand 

(Banerjee and Moll (2010)). Therefore, an experiment that improves physical but not 

economic infrastructure creates an opportunity to decompose misallocations and TFP 

inefficiency arising from different types of institutional deficiency.  

Brandt, Van Biesebroeck, and Zhang (2012) present a comprehensive set of TFP 

estimates from the same dataset around China’s entry into the World Trade Organization 

(WTO). They show that TFP growth, rather than input accumulation, accounts for the main 

source of output growth in China. Using reductions in tariffs associated with WTO entry, 

Brandt, Van Biesebroeck, and Zhang (2012) further show that a procompetitive effect 

dominates for incumbents’ growth while efficiency gain dominates for new entrants. This 

pattern in export-oriented firms, however, is not necessary robust to all firms.  

Infrastructure investment often coincides with economic growth, and at least in part is 

driven by economic development.  Their interaction makes the identification of effects 

ambiguous: new roads boost growth and faster growth demands for roads.  Therefore, we 

also examine the cross-sectional pattern of improvement associated with regional 

development, industry policies, and 

 firm ownership types. Future research could decompose misallocation due to physical 

as opposed to economic infrastructure. It could give a picture of China’s potential economic 

development if its economic infrastructure were to be improved.  



6 
 

Another strand of literature analyzes the impact of transportation on economic welfare.  

Banerjee, Duflo, and Qian (2012) study whether access to better transportation enriches or 

impoverishes the affected regions. As transportation increases factor mobility, new roads 

could not only draw in new economic activities but also make it easier for human and 

physical capital to exit. Donaldson and Hornbeck (2016) show that the expansion the 

railroad system in the United States is fully capitalized into the affected counties’ land 

value, and that the removal of access to that system leads to a 64% fall in land value.  While 

our research is framed similarly, we focus the outcome measurement on and beyond firm-

level TFP. Our measurement of aggregate-level gains will focus on productivity and 

resource allocation efficiency. 

The rest of the paper is organized as follows. In Section 2, we review theoretical 

framework explaining the impact of transportation on productivity and allocative 

efficiency. Section 3 describes the data: the transportation data in the Geographic 

Information system (GIS), Manufacture data, and how they are mapped. Section 4 

documents the TFP, dispersion and their relation to access to transportation. Section 5 

documents the change in TFP, dispersion, input and output in response to the 

transportation treatment that the sample manufacturing plants experienced during the 

sample period, as well as plants’ heterogeneity responses to the transportation treatment. 

Section 6 documents exits and new entrants in response to the treatment and decomposes 

contributions to the TFP through exit, entry and better allocative efficiency in continuous 

operations. Section 7 concludes the paper.  

 

2. Theoretical Motivation 

Lowering transport costs raises the mobility of inputs and outputs including human, 

material, capital and products. Increased mobility intensifies competition and reduces 

trade barriers. These changes potentially affect productivity through several mechanisms.  

• A selection effect:  i.e. the exit of the least productive plants and the entry of 

more productive ones; 

• Improvement in X-efficiency through strengthening managerial incentives; 
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• Spatial redistribution of economic activities through trade and labor 

movements; 

• Industry factors share adjustment through trade and technology 

agglomeration. 

In Syverson’s (2004a) framework, there exists a critical cost c*, such that only entrants 

drawing c<c* will enter to produce. This critical c* is an increasing function of 

transportation cost: when transportation cost is low, the critical c* is low – only more 

efficient producers enter to produce. Improvement in the transportation system predicts a 

truncation of the productivity distribution of entry at the left tail. The entry of more 

efficient producers will also drive less efficient producers to exit. This mechanism works 

through product substitution. Decreasing transportation costs lower the substitution 

barrier. Production will be reallocated to select highly productive plants. More productive 

producers can grab market shares from less productive ones without sacrificing 

profitability.  

Bloom, Sadun, and Van Reenen (2017) estimate that management practices, as a 

technology input, explains about 30% of the differences in TFP across firms and countries. 

Lack of competition makes it possible for firms to use inefficient production techniques and 

still stay in business. Raith (2003) demonstrates that product market competition enforces 

a positive influence on managerial incentives and hence the productive efficiency of firms.  

Improvement in the transportation system promotes product market competition, which 

should be followed by increased total and firm-level productivity.   

The above theories are derived based on a single location, customer-driven and closed 

economy. That is, either a continuum of consumers or a number of firms enter the market 

and evenly position themselves around a circle of a circumference.  Improvement in the 

transportation system expands economic activities, driving the local economy more open 

or more integrated with economic activities in nearby regions.  

Redding (2016) develops a spatial model that incorporates the rich geography of trade 

costs and labor mobility with heterogeneous worker preferences across locations.  It shows 

that not only trade shares but also population, and hence production factors and 

consumption demands may be reallocated.  There are both theoretical and empirical 
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studies on the impact of transportation costs on the spatial distribution of economic 

activities. As Redding and Turner (2015) summarize, many intercity and intracity studies 

show that adding roads, railroads and transit systems, or removing city barriers causes 

population to drop in city centers and employment to increase. However, Faber (2014) 

finds the opposite, but only for the non-targeted area.  

Baqaee and Farhi (2019) show that reducing trade barriers, such as transportation 

costs, allows for trade and redistribution of inputs and outputs across industries and 

countries. The changes in factor shares improve resource allocation and increase aggregate 

output.  

  

2.2 Algebra for sector misallocation  

A sector’s total factor productivity (TFP) is a geometric average of the average marginal 

revenue product of capital and labor in the sector. The sector productivity depends on each 

firm’s total factor productivity and the distortion of resources allocation within the sector.  

As derived in Hsieh and Klenow (2009), when total factor productivity of quantity (TFPQ) 

and total factor productivity of revenue (TFPR) are jointly normally distributed, there is a 

simple closed-form expression for aggregate TFP:   

𝐿𝑜𝑔𝑇𝐹𝑃𝑠 =
1

𝜎−1
𝐿𝑜𝑔( ∑ 𝑇𝐹𝑃𝑄𝑆𝑖

𝜎−1𝑀𝑠
𝑖=1 ) −

𝜎

2
𝑉𝑎𝑟(log (𝑇𝐹𝑃𝑅𝑠𝑖)                            (1) 

where σ is the constant elasticity of substitution (CES) and M is the number of plants in the 

industry s. If marginal products were equalized across plants, industry TFP would be a log 

summation of firm TFP: 𝐿𝑜𝑔𝑇𝐹𝑃𝑠 =
1

𝜎−1
𝐿𝑜𝑔( ∑ 𝑇𝐹𝑃𝑄𝑆𝑖

𝜎−1𝑀𝑠
𝑖=1 ) Equation (1) therefore 

suggests that the negative effect of distortion in the sector can be summarized by the 

variance of the log TFPR among plants.  The larger the dispersion of the marginal products, 

the worse is the misallocation in the sector. 

The existing reduced-form studies on the impact of infrastructure on economic activities 

do not distinguish changes at the level from reorganization of existing activities in the 

observed effects.  Identifying these two effects is critical for policy implications.  Our study 

proposes an although-imperfect-but-intuitive approach: we use the shift in TFPR 

distribution to proxy for the change in the level of production, which captures the effects of 
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lowering the input cost or forwarding technology associated with transportation costs, and 

the dispersion of the TFPR distribution to proxy for the reallocation of production.  

 

3. Data and methodology 

A. Highways, railroads and waterways in China 

China’s National Trunk Highway System (NTHS), also known as the “7918 network”, is 

the world's largest expressway system by length. The name “7918” comes from its 

composition: 7 radial expressways from Beijing, 9 north-south expressways and 18 east-

west expressways. Construction of the system began in 1992 under the National Trunk 

Highway Development Program, which intended to connect all provincial capital cities and 

cities with a registered urban population above 500,000. At the end of 2013, the total 

length of the network was 104,500 km, of which 8,260 km were built in 2013 alone. The 

system continues to expand today with the further intention to connect all rural areas. Our 

transportation data also include China’s provincial highways developed after 2002, 

conventional railways, high-speed railways developed after 2004 and waterways.   

 

Geospatial data for the transportation system 

We digitalize and generate geospatial data for China’s full transportation system, 

including highways, railways and waterways (but not airways) on a yearly basis from 1993 

to 2014.  To have consistent geo measures, we use the geospatial mapping in 2014 as the 

complete universe.  The geo-data of the earlier years are therefore mostly a subset of that 

universe, identified by the actual maps for highways and waterways. For the railways, we 

double check with a list of changes and additions over the sample period recorded by the 

Ministry of Railway.  For a road, railway, or waterway that existed during the sample 

period but have been abandoned by 2014, if it is on the physical map, we manually draw 

and add the data based on the scanned physical map.  In our opinion, this approach to 

constructing the map data incorporates as much information as possible and provides a 

unified comparable measure. Admittedly, two potential biases might arise with this 

approach: First, the manually added routes are the best proxy but may not be the exact 

routes. The deviation is fortunately minimal given the 1:1,000,000 map scale. Second, 

accesses and exits to highways that existed in 2014 are assumed to exist since the routes 
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existed. Stations and ports of railways and waters, however, are identified by actual maps 

for each year.  

 

Appendix A details the definition of the transportation and coverage. Figure A1 

presents the China motorway maps in the years 1993 and 2013, national highways as they 

existed by 1993, Railroads in 1993, high-speed railroads in 2013 and waterways in 1994. 

Year by year examination of the trunk highway shows consistency with the expansion 

phase described by the Ministry of Communication. The highway system expands 

dramatically over the sample period in years 1997, 2003 and 2007.   

Using 25km or less to the nearest access point of a transportation mode, Appendix 

Table A1 shows that 12% of China’s region, measured by zip codes, are covered by 

motorways (trunk highway). This ratio increased to 65% in 2013.  The average distance to 

the nearest access to the motorway decreases from 298km in 1995 to 33km in 2012.  

Access to railway remains mostly the same, consistent with the fact that the improvement 

in the railway system during this period focuses on speed increases.  The high speed 

railway, however, accounts for a much smaller portion of the accessible transportation 

network, as only 6% of the region falls within a distance of 25km.  Appendix Table A2 

shows that 85% of the region has been affected by transportation improvements, using 

within 50km to the nearest access as the threshold or 53% using 25km as the threshold.  

The majority of the changes come from the new motorway, new railway and railway speed 

improvements.   

As the new motorway dominates the overall improvement in transportation, we 

contrast the coverage of trunk highway in 1993 with that in year 2013 in Figure 1a to 

highlight the drastic changes in surface transportation. We also show the year by year 

changes of trunk highway in Figure 1b.  

[Insert Figure 1 about here]  

   

B. The plant-level  manufacturing data 

Our plant-level manufacturing database covers all industrial state-owned firms (SOEs) 

and non-SOEs that have annual sales above five million RMB and some enterprises with 

smaller sales figures. Three caveats are noted. First, the unit of observation in this database 
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is called a “legal unit”. For large enterprises with multiple subsidiaries, each subsidiary 

enters the sample separately as long as it is registered as a legal unit. Given the dominance 

of plant/firm coincidence, 88.9% (96.6) of the units report as single-production units in 

1998 (2007), we treat the database as plant level.  Second, as non-SOEs need to meet a 

minimum sales amount to enter the database, this criterion affects our identification of a 

non-SOE’s operational exit from decreasing of sales unless it reappears in the sample in a 

later year. However, there is no such concern for entries because the founding year is 

observed.  

Although the dataset spans 1998-2013, we include 1998-2007 in the analyses and 

exclude the rest for the following reasons. First, the data in 2008, 2009 and 2010 have poor 

quality of observation. Second, data after 2010 include no intermediate input observations, 

making it impossible to compute TFP consistently with those before 2007.  We also exclude 

plants that appear in the database for one year only and those that locate in the bottom 

10% of counties by the number of plants hosted (288 counties that each hosts fewer than 

13 plants).  The final sample covers 457,805 plants and 2,048,671 plants-year observations 

over the sample period. These plants are located in 2,876 unique counties. 

Annual financial and operational information of the firms are filed with the National 

Bureau of Statistics (NBS). The database also include information about the plants’ 

industry, ownership, legal representative, physical location, contacts and political 

prefecture. Since China changed its political prefecture over time, we manually verify and 

align county code over time to be consistent with 2010 standards. Similarly, because the 

NBS changes industry classifications from the year 2002 to 2003, we adjust the industry 

codes to make the classifications consistent with those after 2003.  

 

Table 1 presents the characteristics and ownership distributions of the sample plants. 

From the year 1998 to 2007, the number of manufacturing units more than doubles. The 

sample average age of manufacturing units dramatically drops from 38 to 10. These two 

patterns suggest enormous new entries, possibly due to both transportation changes and 

the entry into the WTO, among others.  

While the assets grow about 28 % (from 529 to 677 million RMB), firms’ sales more than 

double (from 348 to 817 million RMB). At the same time, there are slight decreases in the 
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financial leverage and the average number of employees hired by each unit. These patterns 

suggest more efficient utilization of assets and labor inputs, consistent with Brandt et al 

(2012)’s claims that TFP growth dominates input accumulation as a source of Chinese 

manufacture output growth.   

The ownership structure of these manufacturing units also experienced dramatic 

changes. Direct state and collective ownership together account for 75% of ownership on 

average in 1998 but the ratio drops to 14% in 2007. The combined corporation, private 

and foreign ownership on the opposite increases from 25% in 1998 to 86% in 2007. 

 [Insert Table 1 about here] 

 

Geo-identification of plants’ location  

We use the longitude and latitude of each address to identify the plant’s geolocation. 

Specifically, as manually coding millions of address’ geo coordinators is unrealistic, we use 

the center point of each unique zip code (six digits and 34,890 independent observations) 

to approximate the geolocation of the plant.  The zip code geo data are purchased from 

DataTang, Ltd, a data developing and sharing company in China. 2  We make sure of the 

data’s reliability by first noting that the longitudinal and latitudinal observations have six 

decimal points and the location is detailed to the village level, and second manually 

verifying 100 random zip codes’ geo data’s corresponding village names from Google maps 

with the actual postal address. The accuracy of the zip geocode validates that our 

approximation is accurate with a drift less than 1.5 km, which is larger than the radius of 

most villages.  

To allow for combination with other geo data such as population and GDP per capita at 

the county level, we choose the 2010 county classification as a consistent county boundary 

measure and base the county geo data on China’s National Census 2010 GeoData, available 

at the China Data Center at the University of Michigan.  As the county codes vary during the 

sample period due to administrative division changes, we manually reclassify them based 

 
2 We also contact a couple of companies in the U.S., such as Google, that claim to have China’s longitudinal and 

latitudinal observations by zip code. We manually verify their data with Google maps and find that the deviation 

could often be over 20km. 
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on 20103  category for consistency. Political administrative division change of the county 

does not affect empirical results because our analyses rely on the physical locations of the 

plants relative to the locations of transportation networks. However, we will incorporate 

the political administrative change to address local government policy biases when 

matching treatment and controlling samples.   

In Figure 2a, we plot plants’ locations on the Chinese map with old roads as of 1998.  In 

Figure 2b, we plot the NEW plants built during 1998-2007 on the map with the new 

additions of highways and high-speed railways during this period. As the figures show, all 

the existing and new entries are located near the highways and railways. For a more 

detailed view, Figure 2c zooms into the Bohai Bay on the northeast coast in 2007. The 

zoomed-in picture shows that the majority of the manufacturing plants are located within 

the 20km buffer of the motorways.  

[Insert Figure 2 about here] 

 

C. Estimation of productivity and misallocation  

It is a challenge to work with the Chinese NBS firm-level data. We follow Brandt, Van 

Biesebroeck, and Zhang (2014) to treat the variables used. After preparing the correct 

input, output, price adjustment and real capital, we use a standard approach of same-year, 

same-industry cost shares coupled with the assumptions of cost minimization and Cobb-

Douglas production to obtain factor demand elasticities.  

Measuring plant-level TFP 

Following Baily, Hulten, and Campbell (1992) and others, we compute plant-level log 

TFP as  

Log𝑇𝐹𝑃et = log𝑄et − 𝛼klog𝐾et – 𝛼Llog𝐿et − 𝛼Mlog𝑀et,      (2) 

 
3 The 2010 census shows 2,872 counties including the districts of metro-cities, of which 2,850 can be directly 
matched with those in the plant sample, covering 92% of the plant observations. For counties in the sample 
that do not have a direct match with 2010 due to the administrative change, we manually categorize the 
plant’s county location based on its address zip codes’ corresponding county in 2010.  For any plant whose 
zip code is missing, we identify the county location based on other plants that have the same county code 
during the sample years and whose 2010 county code has been identified using the zip code. The last step 
also allows us to impute a zip code back for the firm. However, as a zip code covers a much smaller area than 
a county, we avoid using the imputed zip code for empirical analysis. Based on this approach, out of the 
2,038,531 full sample, we observe 1,935,707 year*plants’ geolocation.  
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where e and t index plant and year, respectively; Q is real output; K is real capital; L is labor 

input; M is materials; and α denotes factor elasticity.  

Specifically, we measure plant output, Q, as the total value of shipments plus the change 

in inventories, including both finished products and work-in-progress, then deflated by 

industry-level price indices.  Data on price indices are obtained from the Chinese National 

Bureau of Statistics in China.  

Foster, Grim, and Haltiwanger (2016) and Davis et al. (2014) measure Labor, L, as the 

total hours of production and nonproduction workers. Our plant level data, however, 

document the number of employees and total wages paid rather than the hours. Therefore, 

we use the wage paid per worker.     

Foster, Grim, and Haltiwanger (2016) and Davis et al. (2014) use the perpetual 

inventory method to calculate capital stocks, K, which requires continuous observations 

from firms’ funding year. We apply the similar method, with an adjustment detailed in 

Brandt, Van Biescebroeck, and Zhang (2012, 2014) to compute real capital stock 

specifically for the same Chinese database. The procedure estimates the real value of 

capital stock in the first year that a plant appears in the dataset by inferring the average 

capital growth rate from the startup year using the age and the nominal capital stock 

information in year 1993 at the county and industry levels. This procedure assumes a 

constant growth rate over the years, the same investment deflator (only available at the 

country level) for all firms for each year, and a constant depreciation rate of 9% for all 

firms and all years. While this method is closest to the perpetual inventory method, 

available observations are limited and exclude several industries, including utilities and 

mining, which accounts for nearly 5% of all firms. Given the large heterogeneity in value 

freight ratio, the mining industry is particularly interesting for examining the 

transportation effect.      

Foster, Grim, and Haltiwanger (2016) and Davis et al. (2014) are able to detail energy 

and non-energy material costs: parts, resales, outsourcing and etc. The observations on 

energy and non-energy in our dataset unfortunately are mostly missing.  There are, 

however, quite complete observations on the aggregated intermediary inputs. Therefore, 

we use intermediary inputs to measure production materials, M.  
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We calculate four-digit industry-level cost shares for each input using the Chinese Stock 

Market & Accounting Research (CSMAR) industry classification system and the Chinese 

National Statistics Bureau. Measuring factor elasticities at the plant level rather than 

industry level could be problematic when factor adjustment costs exist (Syverson (2011)), 

which is common in China.  

We use wages to measure labor cost and intermediate input for material cost.  Their 

cost shares, 𝛼L and 𝛼M, take the value of cost over the value of shipments. Given the noise in 

the real capital stock and the lack of capital income information to infer the capital rental 

price, we again use two proxies for the capital cost share: the first is to measure it the cost 

over value of shipment and the second is to set the capital cost share one minus the other 

two shares, 𝛼k = 1- 𝛼L - 𝛼M.  As industry cost shares are noisy and using current year cost 

shares presumes no adjustment costs (Syverson (2011)), we use time average-cost shares 

(the current year and the past year) in the TFP calculation (except for the first year in the 

sample).  

Using the above measurements, we compute TFP as in Equation (2) at its log value. 

Plants with negative values in the input or output are excluded from the computation.  In 

computing the industry average factor shares, we also exclude plants whose own factor 

share is beyond 0 or 1.  As our data have direct observations of labor, wages, inputs, 

outputs and net assets with unknowns denoted as missing, there is no payroll-industry-

imputation issue as discussed in Dunne (1998) and Roberts and Supina (1996). Finally, we 

winsorize estimated TFP in the bottom and top 1% respectively, and adjust the estimated 

TFP by the industry-year mean to measure each plant’s position in its own industry-year 

TFP distribution. 

 

Estimate misallocation 

Following Syverson (2011), we measure misallocation using productivity dispersion. 

An improvement in resource allocation results in a more centered distribution. 

Numerically, we measure dispersion using standard deviation, the value distance between 

the p99 and p1 distribution points, and the value distance between the p90 and p10 

distribution points. We measure both the industry dispersion and locational dispersion. 
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D. Summary statistics of the estimates 

Equal-weighted industry-year adjustment 

We report the mean of log(TFP) and the distribution of industry-adjusted log(TFP) year 

by year in Table 2. Panel A reports the equal-weighted industry-year mean adjustment.  We 

can see that country-wide average log(TFP) increases and the dispersion of industry-

adjusted log(TFP) decreases over the sample period.  Specifically, the standard deviation 

decreases from 0.74 in 1998 to 0.46 in 2007. The wedge between the 1% and 99% 

distribution points narrowed from 3.14 in 1998 to 2.17 in 2007. This reduction in 

dispersion comes more from the shift of the left tail toward the center than the right tail. 

While the cut off value at the 1% of distribution shifts rightward for a value of about 0.8, 

the cutoff values at the 99% shift leftward for about only 0.2 during the sample period. The 

cutoff values for other distribution points remain mostly the same.  

 

Value-weighted industry-year adjustment 

Panel B reports the industry-year adjustment that uses labor input or output value as 

weights. Compared to Panel A, Panel B shows two interesting patterns. First, the value-

weighted industry-adjusted distribution shows the same pattern of dispersion declining 

over time. However, while the decline is driven by both ends, it mainly comes from the shift 

of the left tail towards the center. Second, the value-weighted industry-year mean is 

negative and significantly lower than the equal-weighted industry-year mean. This 

difference suggests that Chinese manufacturers are dominated by small, relatively more 

productive plants if measured by the number of units, but by large, relatively less 

productive plants if measured by market shares. Such an industry distribution suggests 

that the allocation of resources is inefficient: more resources go to unproductive units.  

 

Dispersion and changes by geographic regions 

Panel C report the distribution of industry-adjusted log(TFP) by region. The regions are 

classified as follows: (1) Eastern, including Beijing, Tianjin, Hebei, Shandong, Shanghai, 

Jiangsu, Zhejiang, Fujian, Guangdong and Hainan; (2) Central, including Henan, Anhui, 

Hubei, Hunan, Jiangxi and Shanxi; (3) Western, including Chongqing, Gansu, Ningxia, 
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Qinghai, Inner Mongolia, Tibet, Shannxi, Sichuan, Guizhou, Xinjiang, Yunnan and Guangxi; 

and (4) NorthEastern, including Heilongjiang, Jilin and Liaoning.  

As the panel shows, while productivity in all regions becomes less dispersed, the degree 

of improvement is larger for regions that were relatively less developed. The wedge 

between the 1% and 99% cutoff values is reduced by 1.68 in the Northeastern region,1.43 

in the Central region, and 1.15 in the Western region, but only 0.97 in the Eastern region, 

which is the most developed region.  Despite larger improvements, other regions remain 

less efficient than the Eastern region, whose standard deviation of the industry-adjusted 

log(TFP) and the wedge between 1% and 99% remains the smallest of all.  

[Insert Table 2 about here] 

Dispersion and changes by ownership type 

In Appendix B1, we plot the distribution of industry-adjusted log(TFP) in 1998 and 

2007 for the full sample and various subsamples by ownership, region and industry 

features. In addition to the same pattern in the full sample and cross-regions as illustrated 

in Table 2, Figure 3 also shows the pattern of productivity changes in SOEs versus that in 

non-SOEs. In particular, productivity in SOEs is more dispersed than in non-SOEs. However, 

this gap significantly narrows during 1998-2007. The narrowing primarily results from the 

striking improvement in the SOEs’ productivity. At the same time, although non-SOEs have 

a right shift in their unadjusted log(TFP), the dispersion has become slightly larger.  This 

makes sense because the business environment has greatly improved over years for the 

non-SOEs, allowing relatively less productive ones to enter and survive.  

 

4. Empirical evidence: Static cross-section and time series trends 

In this section, we focus on the static cross-sectional evidence and time series trends. 

Specifically, we establish the importance of transportation for productivity level and 

dispersion.  

 

4.1 Access to transportation and TFP distribution in the cross-section 

Transportation improvement facilitates firms’ easier and cheaper access to a rich 

variety of intermediate inputs. On one hand, as predicted by Syverson (2004a) selection 

mechanism, less productive firms do not survive when situated within a competition circle. 
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On the other hand, firms in the remote parts of the transportation system have less access 

to information about technology, management and business practice advancements, hence 

tend to be at the back of the technology frontier.  

We hypothesize that plants near highway exits or entrances should situate higher in 

the TFP distribution. To test this conjecture, we use GIS to calculate each plant-year’s 

distance to the nearest highway’s exit and entrance point, respectively, for all surface 

transportation methods. We then run the panel regression, where the dependent variable 

is the industry-year adjusted log(TFP), i.e., the position of the plant in its own industry-year 

TFP distribution, which is equivalent to controlling for the year*industry fixed effects. The 

explanatory variables are the distance to the nearest transportation access point. We 

include plant size, age, ownership and province-year fixed effect in the specification. 

Including province-year fixed effect is equivalent to controlling for local economic 

development, population, resources and industry policies. 

Log𝑇𝐹𝑃it = α+Σβkt*Distanceikt+ Σβjt*Characteristicsijt+Province-Year FE +εit ; (3) 

where, Log𝑇𝐹𝑃it is adjusted by industry-year mean and standard deviation, so that the 

value represents plant i’s location on its own industries’ TFP distribution in year t, in the 

scale of its own industry-year standard deviation.  Distanceikt is plant i’s distance to the 

nearest access point for transportation type k in year t; Characteristicsijt  is plant i’s 

characteristic j in year t, including all various fixed effects.  

 The first row in Table 3 reports results from regressions where each transportation 

type enters the regression, one by one. The second row in Table 3 reports results from 

regressions where all transportation types enter the regression simultaneously. In Panel A, 

the dependent variable is industry-year adjust log(TFP) measured as a percentage of 

standard deviation. All coefficients negative and mostly significant at the 1% level, except 

for high-speed railways. For example, the industry-year adjusted log(TFP) has a coefficient 

of -1.85 on the distance to the nearest access to a motorway. In terms of marginal effect, for 

every 1km the plant is further from the motorway access or exit points, its TFP, controlling 

for characteristics, ownership and regional effect, moves downward by 1.85% standard 

deviations in its own sector. This negative relation applies to all other transportation 

modes, except high-speed railways.  
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We run the same regression with the labor-weighted or shipment value -weighted 

industry-year adjusted log(TFP), measured as a percentage of standard deviation, as the 

dependent variable. As Panels B and C show, the results are qualitatively the same.   

[Insert Table 3 about here] 

To visually present the relation, we conduct a non-parametric analysis with the 

distance, then plot the estimated coefficients for each distance range in Figure 3, Panel A. 

As the plot shows, The TFP is lower when plants locate further away from transportation 

access points. In Panel B, we plot a heat map by the access to a motorway in 2004. The heat 

is determined by the average TFP. As the map shows, TFP is higher when the plants are 

closer to transportation.   

[Insert Figure 3 here] 

  

4.2 Locational dispersion  

For each location and year, we compute the average deviation of TFP, measured by 

the absolute value of industry-adjusted TFP, for all plants at that location.   

𝐷𝐸𝑉𝑙 =
∑ |log (𝑇𝐹𝑃𝑙,𝑖)|𝑖∈𝑙

𝑁𝑙
       (4) 

where l denotes the location and i the plant.   

We then run regressions at the location level, with the above deviation as the 

dependent variable, and the access to surface transportation and local plant density as the 

explanatory variables. Province-year fixed effects are also controlled. With a similar 

approach in Figure 3, we run the non-parametric regression and plot heat map for the 

dispersion of TFP by location.   

As Figure 4, Panel A shows, the locational dispersion is larger when the location is 

further away from transportation. In Panel B, the heat is the locational TFP. The heat is 

lower when the location is closer to transportation, measured by the 2004 motorway.  

[Insert Figure 4 here] 

 

4.3 Time series trend of TFP distribution by industry reliance on transportation  
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The impact of transportation on productivity dispersion intuitively differs across 

manufacturing units due to their reliance on a transportation system. For example, the 

concrete industry has low value-to-weight ratios, hence is confined to local competition, 

allowing inefficient plants to survive unless a large reduction in transportation cost occurs.  

A: The concrete industry as an anecdotal example  

In Figure 5a, we plot the distribution of industry-adjusted log(TFP) in the years 1998 

and 2007 for the concrete industry. We include plants that produce cement (3121, 3123 

and 3124), brick, tile and stone construction materials (3129, 3131 and 3133), but exclude 

part of the cement industry (3111, 3112, 3122 and 3132) because the number of plants 

coded in these industries dramatically fluctuates across sample years.  

As the figure shows, from 1998 to 2007, the distribution of TFP in the concrete industry 

becomes much more concentrated in the middle and slightly shifts towards the right. The 

changes for the concrete industry (Figure 5a) are much more obvious compared to the 

changes for the full sample (Appendix B).    

B: Low value- to-weight versus high value-to-weight 

 We also contrast TFP distributions in 1998 and 2007 for (e) high value/weight 

industries and (f) low value/weight industries. The high value over weight industries 

include gold, silver mining (921, 922), cigarette tobacco products (1620, 1690), silk 

products (1754, 1763), leather and fur products (1921, 1922, 1923, 1932), cosmetic and 

fur products (2672, 2674). The low value over weight industries include ore mining (933), 

tobacco stemming and re-drying (1610), stone quarrying and mining (1011, 1012 and 

1013) and wood and bamboo furniture (2110, 2120).  

As Figures 5c-5f show, while the dispersion of industry-adjusted log(TFP) become 

smaller for both groups, the decline in the high value/weight industry is driven by the 

reduction of markup in the right tail and in the low value/weight industry on both ends.  

Examining the unadjusted log(TFP) shows that, while both groups radically reduce 

dispersion over time, industries with low value over weight ratios remain with lower 

productivity and a larger dispersion.  

C: Transportation access at the beginning of the sample period 

We also contrast TFP distributions in 1998 and 2007 for (m) plants that have poor 

transportation access in 1998 but good access in 2007, (o) plants with good transportation 
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access in both 1998 and 2007, and (q) plants with poor transportation access in both 1998 

and 2007. Poor access is defined as having no access of any type within 25km, and only one 

type of access within 50km. Good access is defined as there are at least three types of 

access within 50km.   

As Figures 5m-5q show, among the three groups, only the one with transportation 

changes from poor to good has an obvious right shift in the unadjusted log(TFP) and the 

distribution of the industry-adjusted log(TFP) becomes more centered. For plants with 

always-good or always-poor transportation access, there is no obvious improvement in 

their productivity and allocation. While plants that situated on the left side seem to 

disappear from 1998 to 2007, those that situated on the right side appear to enjoy a larger 

markups in 2007 than in 1998. This result is consistent with Faber (2014) that the new 

transportation changes further isolate those regions that are skipped in the new network.   

 [Insert Figure 5 here] 

 

5. The quasi-natural experiment approach 

This section examines the treatment effect of transportation infrastructure changes on 

productivity. As increased competition eliminates the least productive plants and shift 

resources to the more productive ones, this correction of misallocation induces a more 

centered distribution. The treatment effect will differ across plants depending on where 

they are situated on the pre-treatment productivity distribution.   

 

5.1 Transportation treatment and productivity changes: RDD 

Define and match treatment and control 

For each year, we identify new segments of highways, improvement in the railways and 

waterways. For the highway and high-speed railway systems, we identify new additions to 

routes, accesses, exits, or stations. For the conventional railways and water systems, we 

identify improvement in the speed, transportation capacity and new additions to stations 

or ports.  

The treatment sample starts with all plants that are located within a distance (in km 

diameter-circle) from any of the new NTHS accesses, exits and railway stations. As such, we 

have four panels of treatment events based on the distance criteria: 5km, 10km, 25km and 
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50km.  Appendix Table A2 summarizes the treatment events by different criteria. Table A3 

summarizes the total treatment sample, using the loosest 50km criteria. Here, we elaborate 

the approach and present the results, specifically for the 25km criteria. 

The treated plants are located within 25km of the access point to any new additions to 

transportation in that year, conditional on no previous access within 25km. The controls 

are plants that don’t experience any treatment with the 25km criteria, during the five-year 

window of [t-2: t+2], conditional on no previous access within 25km. There are 1,779 

treatments and 22,405 controls at the zip code level. We plot all the treated and control 

locations in Figure 6, Panel A.  

Using regression discontinuity design (RDD), we match the treated and control plants 

based on year, province and neighboring location. The matched sample has 1,440(*2) pairs. 

We plot the matched treatment and control locations in Figure 6, Panel B. There are 38,091 

plants located in the matched treated locations and 12,986 in the matched controls.  

We are less concerned about idiosyncratic events that might have created a bias around 

a specific event or in a specific region, because they are likely to be only noises in the large 

panel of events. The province-year fixed effect will also reduce the influence of such noises. 

As follows, we will examine cross sectional patterns of the TFP changes around the event to 

establish a link with transportation.  In short, our study does not argue that infrastructure 

is the only cause for TFP changes, but seeks to prove that it is indeed one among many that 

matter. 

 

Treatment effect and falsification tests 

Despite clear theoretical frameworks and evident cross-sectional patterns, several 

factors may obfuscate the estimated treatment effect. First, in an emerging economy that 

experiences continuous economic and institutional reforms and is exposed to extensive 

political interference from the central and local governments, it is inevitable that many 

other unobservable events could randomly coincide with the infrastructure changes.   

Second, due to the Chinese central government’s five-year National Development Plans, 

there is often a five-year cycle during which certain particular industries boom. We hope 

that matching on industry and year significantly reduces the bias caused by the 

government’s industrial favoritism policy.  
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Finally, while it is salient that, based on the trend of productivity distribution, resource 

allocation efficiency improves over time, which factors have contributed to the efficiency 

improvement is unclear. Government’s industrial policies, infrastructure changes and 

institutional improvements may all have contributed to this efficiency improvement. These 

factors may move in the opposite direction for reasons irrelevant to transportation.  

Nevertheless, we present the treatment effect and falsification tests in Table 4. The 

dependent variables are industry-year adjusted log(TFP) and the growth rate of input and 

output, respectively.  The treatment effect is estimated by assigning year t, the true event 

year, as the event year in estimation. The falsification tests are conducted by assigning year 

t+/-s as the event year in estimation.  

Not surprisingly, the estimated treatment effect is not as clear cut as we usually see in an 

event study. However, the pattern in Panel A clearly suggests the following: (1) The 

reversal causality story can be excluded. The transportation changes are not likely driven 

by the productivity increases, as the falsified t-1 and t-2 event years have an insignificant or 

negative impact on the productivity change indicators. (2) There are some significantly 

positive treatment effects in the years t and t+1.  

In Panel B, we examine the three-year mid-term effect. The growth of productivity, input 

and output are measured from t-1 to t+2 or from t to t+3. The estimation shows a mostly a 

positive and somewhat significant treatment effect. 

[Insert Table 4 here] 

 

5.2 Instrumental approach 

Another approach to addressing the potential endogeneity issue is to use instruments. 

Following Baum-Snow et al. (2017), we utilize the historical 1962 road and railway 

network as the instrument for the transportation treatments that occurred in our sample 

period. This identification strategy is valid in the sense that the roads and railroads in 1962 

affect plants current performance only because of their influence on the current 

transportation network. To measure the instrument, we calculate the distance between 

each zip code and the nearest road and railway in 1962. 

In the first stage, we use the historical road access to explain the transportation changes 

that occurred in each treated location. In the case of simultaneously occurring changes, we 



24 
 

use the one within the shortest distance. We also include the location’s distance to the 

nearest prefectural-level or county-level city, whichever is closer. In the second stage, we 

use the predicted distance of transportation changes to define treatment and control, and 

match them based on year, province and neighbouring locations. The dependent variables 

in the 2nd stage are the same as those in Table 4. The fixed effects, control variables in Table 

4, and those in the 1st stage are all included.  

Distance to new access = α + 𝛽1𝑅𝑜𝑎𝑑1962 + 𝛽2𝑅𝑎𝑖𝑙1962 + 𝛾𝑋 + 𝜀 

𝐿𝑜𝑔(𝑇𝐹𝑃) 𝑜𝑟 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑄, 𝐿, 𝑀, 𝐾 = α +  𝛽 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

+𝛽1𝑅𝑜𝑎𝑑1962 + 𝛽2𝑅𝑎𝑖𝑙1962 + 𝛾𝑋 + 𝐹𝐸 + 𝜀    (6) 

We present the results in Table 5. The first column shows the results from the 1st stage.  

The distance to the historical roads and railroads significantly predict the distance to the 

new transportation access points. The rest three columns present the regression results for 

the zip code-level average TFP in year t+1 after the treatment, where the treatment is 

defined as the predicted distance from the 1st stage. As the columns show, the equal-

weighted, labor-weighted and output-weighted industry-year adjusted log(TFP) at the zip 

code level is significantly higher in the treated locations than in the matched control 

locations. These results suggest that transportation improvement positively influences 

productivity and resource allocation.  

[Insert Table 5 here] 

 

5.3 Asymmetric effects 

The impact of resource reallocation upon transportation cost reduction depends on 

firms’ current competitiveness or technology (Syverson (2004b)). Firms that are located at 

the high end of the TFP distribution are likely to gain more resources, when new access to 

transportation is introduced. This effect should also be larger for industries with high 

shipment cost over value than for those with low shipment cost over value. 

To conduct the test, we divide the treatment plants into four quartiles and examine 

how productivity, input and output grow three years after the treatment and differ across 

the quartiles. We run the following regression to detect the asymmetry in difference-in-

difference. 
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Growthit-1:t+3 = αi+ Σγk*Treat *Quartilek+ γij*Controlij+Province-year FE +εit ; (6) 

where Growthit:t+3 is the changes in the shipment, employment, real capital and material, 

respectively.  The growth rate is computed as the change in output between year t and 

t+3, divided by the simple average of output (or factor input) in t and t+3. This growth 

rate measure is symmetric around zero, lies in the closed interval [-2, 2], facilitates an 

integrated treatment of births and deaths, and is identical to the log difference up to a 

second-order Taylor series expansion. αi is industry fixed effect. Treat is the dummy 

indicating treatment and equals one for treatment plants with event occurred in year t.  

Quartilek denotes the plants’ location on the pre-event TFP distribution.  Control variables 

include plant size, age, existing access to transportation, ownership and province-year 

fixed effect. εit is the random shock.  

As Table 6 shows, after the treatment, plants with pre-event productivity in the bottom 

and top quartile lose resources and the two middle quartiles grow better. The pattern is 

consistent with the hypothesis that the distribution of productivity becomes more 

centered, with the worst plants losing markets and the best ones reducing markups.   

[Insert Table 6 about here] 

 

5.4 The change in within-industry dispersion and the change in average distance to 

transportation 

Another DID approach is to examine how within-industry TFP dispersion changes in 

relation to the plants in this industry that are impacted by the transportation changes. The 

categorization of industries is based on the two-digit industry classification system in the 

CSMAR and Chinese NBS, and the plants are grouped into 40 industries. We measure the 

within-industry TFP dispersion with 𝑉𝑎𝑟(log (𝑇𝐹𝑃𝑠𝑖), where i denotes plant in sector s. The 

change in industry dispersion from time b to t is therefore: ∆𝑏:𝑡 𝑉𝑎𝑟(log(𝑇𝐹𝑃𝑠𝑖).  

We measure the average distance (AD) and weighted average distance (WD) to 

transportation mode M for sector s in year t as follows:   

𝐴𝐷𝑡
𝑠,𝑀 =

∑ 𝑁𝑙,𝑡
𝑠 𝑑𝑙,𝑡

𝑀
𝑙

∑ 𝑁𝑙,𝑡
𝑠

𝑙
      (7a) 

𝑊𝐷𝑡
𝑠,𝑀 = ∑ 𝑆𝑙,𝑡

𝑠 𝑑𝑙,𝑡
𝑀

𝑙      (7b) 
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where 𝑁𝑙,𝑡
𝑠  is the number of plants in industry s, at time t, that are in location l; 𝑆𝑙,𝑡

𝑠  is plants’ 

share of industry s activities (measured by output or labor), at time t, that are in location l.  𝑑𝑙,𝑡
𝑀  is 

location l’s (center point) distance to the nearest access point to mode M (transportation type) at 

time t.  The change in the average (w/o weights) distance to transportation mode M for plants in 

sector s is measured using both the fixed plant (fixed spatial distribution) approach and letting 

the spatial distribution vary over time.  

∆𝐴𝐷𝑏,𝑡
𝑠,𝑀(𝑓𝑖𝑥𝑖𝑛𝑔 𝑠𝑝𝑎𝑡𝑖𝑎𝑙) =

∑ 𝑁𝑙,𝑏
𝑠 𝑑𝑙,𝑡

𝑀
𝑙

∑ 𝑁𝑙,𝑏
𝑠

𝑙
−

∑ 𝑁𝑙,𝑏
𝑠 𝑑𝑙,𝑏

𝑀
𝑙

∑ 𝑁𝑙,𝑏
𝑠

𝑙
      (7c)  

∆𝑊𝐷𝑏,𝑡
𝑠,𝑀(𝑓𝑖𝑥𝑖𝑛𝑔 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ) = ∑ 𝑆𝑖,𝑙,𝑏

𝑠 𝑑𝑙,𝑡
𝑀

𝑖 − ∑ 𝑆𝑖,𝑙,𝑏
𝑠 𝑑𝑙,𝑏

𝑀
𝑖    (7d) 

∆𝐴𝐷𝑏,𝑡
𝑠,𝑀(𝑣𝑎𝑟𝑦 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ) =

∑ 𝑁𝑙,𝑡
𝑠 𝑑𝑙,𝑡

𝑀
𝑙

∑ 𝑁𝑙,𝑡
𝑠

𝑙
−

∑ 𝑁𝑙,𝑏
𝑠 𝑑𝑙,𝑏

𝑀
𝑙

∑ 𝑁𝑙,𝑏
𝑠

𝑙
    (7e) 

∆𝑊𝐷𝑏,𝑡
𝑠,𝑀(𝑣𝑎𝑟𝑦 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ) = ∑ 𝑆𝑖,𝑙,𝑡

𝑠 𝑑𝑙,𝑡
𝑀

𝑖 − ∑ 𝑆𝑖,𝑙,𝑏
𝑠 𝑑𝑙,𝑏

𝑀
𝑖    (7f) 

 We run regressions with rolling window observations. As Table 7 shows, the shorter the 

distance, the larger is the reduction in TFP dispersion, indicating more efficiency in the within-

industry allocation of resources.   

[Insert Table 7 here] 

6. Exit and new entry 

6.1 Asymmetric exit and entry 

Productivity-enhancing resource reallocation involves the exit of inefficient plants and 

the entry of relatively efficient ones. We investigate how events of interest influence the 

pace and character of plant exit and entry following the approach in Table 8 of Davis et al.  

(2014). The first step is to sort plants into quartiles defined by their situation in their own-

industry TFP distribution at t.  The second step fits logistic models for the probability of 

plant exit by time t+2, allowing the probability to differ by the time-t TFP quartiles 

interacted with an indicator for whether the plant was affected by the event of interest at t.  

The estimated model tells us how the probability of exit by t+2 varies with the plant’s prior 

location in its own-industry TFP distribution and how this probability function shifts after 

the treatment event.  For example, suppose that the events of interest are public 

investments in transport infrastructure. Then we can immediately discern whether the 
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reduced shipping costs and intensification of competitive pressures associated with these 

events yield greater exit rates of low-TFP plants.   

Table 8 Panel A shows two clear patterns. First, consistent with the hypothesis, the exit 

rate is the highest in the least competitive units, and declines when plants move up in the 

TFP distribution. The same pattern exists in the treated and control group. However, the 

control sample, surprisingly, has higher, although insignificantly differently, exit rates than 

the treated sample. The latter result is consistent Faber (2014) that regions that are passed 

by in China’s new trunkway system experience deterioration in economic activities.  

We also investigate how these events affect the pace of plant entry by quartiles of the 

plant-level TFP distribution.  In Panel B, we compare the probability of plants entering in 

years t to t+2 after the treatment by their performance in year t+3. Two patterns appear. 

First, plants that locate higher on the productivity distribution in year t+3 are more likely 

to be new entries during years t to t+2.  Second, the probability that the high productive 

plants are new entries is significantly larger in the treated sample than in the control 

sample. 

In Panel C, we compare the exit and entry rates among all treated, the matched controls 

and the non-matched controls. We find that the exit and enter rates are significantly higher 

in the treated and the matched controls than in the non-matched-controls. This result 

suggests that control locations that are not near the treated locations are least affected by 

transportation changes. 

 [Insert Table 8 about here]  

 

6.2: Operational status and TFP changes 

In Table 9, we regress log(TFP) on plants’ operational status with the following three 

specifications.  

(a)    𝑇𝐹𝑃𝑖𝑡 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) + 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸 
+𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 − 𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝜀; 
 

(b)   𝑇𝐹𝑃𝑖𝑡+2 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) + 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸  
    +𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 − 𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝜀 

 
(c)  𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑇𝐹𝑃 𝑓𝑟𝑜𝑚 𝑡 𝑡𝑜 𝑡 + 2 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) 

+𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸 + 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 − 𝑌𝑒𝑎𝑟 𝐹𝐸    (8) 
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 Panel A shows that plants that continue operation two years after the treatment 

have significantly positive (above industry-year average) TFP, while those that exit have 

significantly negative TFP. This contrast is more striking in the treated than in the controls.   

Panel B shows that plants that continue operation from t to t+2 and new entry 

plants during years t to t+2 both have significantly above industry log(TFP) in year t+2. The 

outperformance is larger in the treated than in the controls. In the treated sample, new 

entries outperform the continuous ones. The opposite is true in the control sample. 

Panel C compares the growth in TFP between the treated and the controls. We find 

that the continuous plants experienced significant TFP growth in the control sample, but 

not in the treated sample.  

 [Insert Table 9 about here] 

 

6.3 Decomposition of TFPs by contributions of new entrants, continuers and exits.  

We quantify and decompose the overall TFP effects of the events working through 

plant entry and exit margins. Following Davis et al. (2014): 

∆𝑇𝐹𝑃𝑡:𝑡+2 = (𝑆𝑡+2  
𝑐 𝑇𝐹𝑃𝑡𝑡+2

𝑐 − 𝑆𝑡  
𝑐 𝑇𝐹𝑃𝑡𝑡

𝑐) + (𝑆𝑡+2  
𝑁 𝑇𝐹𝑃𝑡𝑡+2

𝑁 − 𝑆𝑡  
𝑥 𝑇𝐹𝑃𝑡𝑡

𝑥)    (9) 

where S is employment share, computed for the treatment plants only or for all plants, and C, N, 

X denote continuers, new entrants and exits. We express the change in TFP as the deviation from 

the controllers’ change in TFP over the same period ∆𝑇𝐹𝑃𝑡:𝑡+2
̃  

∆𝑇𝐹𝑃𝑡:𝑡+2 − ∆𝑇𝐹𝑃𝑡:𝑡+2
̃ = (𝑆𝑡+2  

𝑐 (𝑇𝐹𝑃𝑡𝑡+2
𝑐 − ∆𝑇𝐹𝑃𝑡+2

𝑐 ) ̃ − 𝑆𝑡  
𝑐 (𝑇𝐹𝑃𝑡𝑡

𝑐 − ∆𝑇𝐹𝑃𝑡
𝑐) ̃ ) +

 (𝑆𝑡+2  
𝑁 (𝑇𝐹𝑃𝑡𝑡+2

𝑁 − ∆𝑇𝐹𝑃𝑡+2
𝑐 ) ̃ − 𝑆𝑡+2

𝑁̃ (𝑇𝐹𝑃𝑡𝑡+2
𝑁 − ∆𝑇𝐹𝑃𝑡+2

𝑐 ) ̃ − 𝑆𝑡  
𝑥 (𝑇𝐹𝑃𝑡𝑡

𝑥 − ∆𝑇𝐹𝑃𝑡
𝑐) ̃ +

𝑆𝑡
𝑋̃(𝑇𝐹𝑃𝑡𝑡

𝑥 − ∆𝑇𝐹𝑃𝑡
𝑐) ̃  )               (10) 

The brackets in the top line isolate the contribution of differences between the treated and the 

controls among continuing plants; the second line isolates the contribution of plant entrants and 

exiters (births and deaths).  

 We decompose changes for the whole sample period as well as for a rolling two-year 

window. Panel A of Table 10 presents the results for the full sample. The overall TFP in the 

economy during the sample period increases by 20%, half from the improvement in continuing 

plants and half from exiters and entrants. However, the two-year rolling window estimation 

shows that the majority are from the continuing plants, suggesting inefficient exit and entry. This 
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result is consistent Brandt, Kambourov and Storesletten (2019): barriers to entry are the cause of 

underperformance in new entrants and new entrants’ performance deteriorates on average by the 

end of the second year after entry.  

 Panel B presents the decomposition of changes in the treated and the control samples, 

using two-year changes as a measurement. We find that the overall improvement in TFP of 4.5% 

comes all from the continuing plants. The contribution of exiters and entrants is negative, 

suggesting not only inefficient exit and entry but also possible crowding out or distortion in 

existing plants. The changes in TFP in the control locations are overall negative, mainly coming 

from exiters. This result again is consistent with Faber (2014) that economic activities deteriorate 

in regions that are passed by in China’s new trunkway system.  

[Insert Table 10 here] 

 

7. Conclusion 

We compile a comprehensive dataset for China’s surface transportation from 1995 to 

2013 and geocode of longitudinal data on location, inputs and outputs for half million 

manufacturing plants in the GIS.  We show that manufacturing plants located closer to 

transportation are more productive. Productivity and allocative efficiency increase when 

access to transportation improves. The improvements come from increased market 

competition created when unproductive units are forced out, facilitating the entry of new 

units and reallocating resources among continuously existing units. Plants situated at a 

higher distribution position in the pre-treatment period gain more resources in the post-

treatment period.  Exiters and new entrants have contributed to 9% of the increases in TFP.   

Our current results suggest an association between transportation and TFP, rather than 

causality. The difficulty arises from the potential endogeneity issue of transportation 

construction and TFP. The transportation change could be a response to expected TFP 

improvement and the misallocation could be negatively associated with TFP. These 

patterns together generate an endogeneity issue between transportation and misallocation. 

We reduce this concern to some degree when normalizing the TFP measure within 

industry and year. More importantly, we address the concern with RDD and instrumental 

approaches, and falsification test which shows only significant treatment effect only at the 

actual event time.  
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Figure 1:  Surface Transportation Changes in China: Motorway example 

A: The orange lines indicate Motorway map in 1993 and the blue lines, 2013.  

 

 

 

 

 

  

Harbin 

Beijing 

Shanghai Chengdu

Lhasa 

Urumqi 

Guangzhou 



34 
 

B:  Year-by-year changes in China’s Motorway from 1993 to 2012. 
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Table 1: The sample description   

 Our empirical analyses use Chinese plant-level data during year 1998-2007. We describe the annual 

sample annual characteristics in Panel A: firm size (total assets), leverage (long-term + short-term 

liability/total assets), sales, age, and the distribution of ownership types across years. 

  Characteristics Ownership type (%) 

Year 
 

# of 
 units 

Assets 
(RMB  

million) 

Sales 
(RMB 

Million) 
Emp- 
loyee 

Leve- 
Rage  

(%) Age State Collective  Corporate Private Foreign 

1998 133,202 529 348 295 65 38 37 38 8 10 7 

1999 150,588 530 356 301 65 25 34 37 11 10 7 

2000 150,388 555 401 276 64 19 30 35 16 11 8 

2001 159,630 542 413 268 61 16 25 30 26 11 8 

2002 172,514 553 446 260 60 14 21 27 33 11 8 

2003 183,687 584 515 257 58 12 16 23 40 11 9 

2004 250,073 517 497 217 59 10 11 17 50 11 11 

2005 266,342 560 588 219 56 10 9 17 53 10 11 

2006 295,602 585 655 209 55 10 8 8 64 10 11 

2007 276,505 677 818 218 54 10 6 7 65 10 11 

 

Figure 2: Plant locations in China  

The first graph plots all the plants in China in the year 1998 with old railroads. The second 

graph plots the addition of new plants during years 1998-2007 and the new additions of 

the highway and high-speed railways during this period.  

 

(a): Plants locations in 1998 relative to the National Highway 
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(b): Locations of NEW ENTRIES of plants 1998-2007 relative to the Motorway and 

high-speed railway 

 

 

 

(C) Motorway’s 20km buffer and plants’ locations in 2007, a Northeast coast example 
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Table 2: Summary statistics of the sample’s TFP.  

In table we report the distribution of plants’ total factor productivity computed as Log𝑇𝐹𝑃et = log𝑄et − 

𝛼klog𝐾et – 𝛼Llog𝐿et − 𝛼Mlog𝑀et, (1). Panel A reports its annual mean and standard deviation, and its industry-

year-adjusted values’ percentage cut off values on distribution. Panel B reports the value (labor)-weighted 

industry-year mean and standard deviation, and its value-weighted industry-year -adjusted distribution.  

Panel C reports the value (output value)-weighted industry-year mean and standard deviation, and its value-

weighted industry-year -adjusted distribution by region.  

The regions are classified as follows: Eastern: Beijing, Tianjin, Hebei, Shandong, Shanghai, Jiangsu, Zhejiang, 

Fujian, Guangdong, Hainan; Central:Henan, Anhui, Hubei, Hunan, Jiangxi, Shanxi; Western: Chongqing, Gansu, 

Ningxia, Qinghai, Inner Mongolia, Tibet, Shannxi, Sichuan, Guizhou, Xinjiang, Yunnan, Guangxi; NorthEastern: 

Heilongjiang, jilin, Liaoning. 

Panel A: Full sample 

 Industry-Year mean and std, Log(TFP) Distribution of industry-year-adjusted log(TFP) 

Year obs. Mean STD P1 p10 
p50 

p90 P99 P90-P10 
P99-

P1 

1998 93,225 1.12 0.46 -1.83 -0.44 0.02 0.45 1.30 0.89 3.14 

1999 106,287 1.20 0.48 -1.92 -0.47 0.03 0.48 1.20 0.95 3.13 

2000 113,769 1.18 0.49 -1.91 -0.48 0.03 0.48 1.37 0.96 3.27 

2001 127,772 1.18 0.47 -1.95 -0.44 0.02 0.47 1.18 0.90 3.13 

2002 138,404 1.19 0.47 -1.88 -0.45 0.02 0.47 1.19 0.92 3.07 

2003 149,101 1.21 0.42 -1.58 -0.42 0.01 0.46 1.06 0.88 2.64 

2004 209,281 1.24 0.40 -1.20 -0.42 -0.01 0.46 1.12 0.88 2.33 

2005 214,884 1.32 0.41 -1.18 -0.45 -0.01 0.48 1.14 0.92 2.32 

2006 232,433 1.38 0.41 -1.16 -0.45 -0.02 0.48 1.20 0.93 2.36 

2007 212,696 1.44 0.40 -1.04 -0.44 -0.02 0.48 1.13 0.92 2.17 

 

Panel B: Value-weighted industry-year adjusted log(TFP) 

Value weighted by Labor input (L) 

  Industry-Year mean and std  Distribution of industry-year-adjusted log(TFP) 

Year Obs Mean STD p1 p10 p50 p90 p99 P90-P10 P99-P1 

1998 120,564 -0.14 0.54 -2.38 -0.67 -0.09 0.38 1.12 1.05 3.50 

1999 130,872 -0.12 0.56 -2.32 -0.70 -0.06 0.44 1.10 1.13 3.42 

2000 129,054 -0.12 0.56 -2.24 -0.69 -0.08 0.43 1.20 1.12 3.44 

2001 138,299 -0.10 0.52 -2.16 -0.61 -0.06 0.42 1.10 1.03 3.26 

2002 148,201 -0.09 0.51 -1.95 -0.60 -0.05 0.43 1.14 1.04 3.09 

2003 158,239 -0.08 0.45 -1.69 -0.56 -0.06 0.42 1.02 0.97 2.71 

2004 221,598 -0.07 0.42 -1.29 -0.52 -0.08 0.41 1.07 0.94 2.36 

2005 236,582 -0.07 0.42 -1.26 -0.53 -0.07 0.43 1.07 0.96 2.33 

2006 262,583 -0.07 0.42 -1.23 -0.53 -0.08 0.42 1.11 0.95 2.34 

2007 244,458 -0.06 0.40 -1.09 -0.51 -0.07 0.42 1.04 0.93 2.13 
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Value weighted by Output (value Q) 

  
Value (Q)-weighted Industry-

Year mean and std Distribution of industry-year-adjusted log(TFP) 

Year Obs Mean STD p1 p10 p50 p90 p99 P90-P10 P99-P1 

1998 120,564 -0.25 0.55 -2.50 -0.79 -0.20 0.27 1.01 1.06 3.50 

1999 130,872 -0.26 0.56 -2.51 -0.85 -0.20 0.30 0.96 1.15 3.47 

2000 129,054 -0.25 0.56 -2.37 -0.83 -0.20 0.30 1.11 1.13 3.48 

2001 138,299 -0.22 0.52 -2.32 -0.75 -0.18 0.30 0.98 1.05 3.29 

2002 148,201 -0.21 0.51 -2.08 -0.73 -0.17 0.31 1.02 1.05 3.11 

2003 158,239 -0.18 0.46 -1.78 -0.67 -0.16 0.31 0.90 0.98 2.68 

2004 221,598 -0.16 0.42 -1.38 -0.62 -0.16 0.32 0.98 0.94 2.36 

2005 236,582 -0.16 0.42 -1.36 -0.63 -0.16 0.33 0.97 0.96 2.32 

2006 262,583 -0.16 0.42 -1.33 -0.63 -0.16 0.33 0.99 0.95 2.32 

2007 244,458 -0.14 0.40 -1.19 -0.59 -0.15 0.34 0.97 0.93 2.16 

 

Panel C: By region: Industry adjusted TFP 

 Eastern Western 

Year 
 

Obs.  Mean STD 
P90-
p10 

P99-
P1  

 
Obs.  Mean STD 

P90-
p10 P99-P1 

1998 70,321 0.02 0.45 0.89 3.04  14,908 -0.06 0.59 1.24 3.60 

1999 75,669 0.02 0.50 0.99 3.22  16,925 -0.09 0.62 1.32 3.66 

2000 75,328 0.03 0.48 0.95 3.21  17,209 -0.11 0.63 1.36 3.82 

2001 85,587 0.02 0.46 0.90 2.97  17,240 -0.09 0.59 1.24 3.50 

2002 94,281 0.02 0.46 0.93 2.99  17,712 -0.07 0.57 1.23 3.32 

2003 104,549 0.01 0.41 0.88 2.54  17,827 -0.08 0.53 1.20 2.99 

2004 153,714 0.01 0.40 0.88 2.29  20,868 -0.04 0.48 1.09 2.75 

2005 162,097 0.00 0.40 0.90 2.20  23,067 -0.03 0.49 1.11 2.69 

2006 178,295 -0.01 0.39 0.88 2.14  25,114 -0.01 0.48 1.10 2.63 

2007 167,476 -0.01 0.38 0.87 2.07  22,447 0.01 0.45 1.06 2.45 

 

 Central North Eastern 

Year 
 

Obs.  Mean STD 
P90-
p10 

P99-
P1  

 
Obs.  Mean STD 

P90-
p10 P99-P1 

1998 22,787 0.07 0.57 1.10 3.80  8,567 -0.24 0.78 1.68 4.09 

1999 25,105 0.03 0.59 1.20 3.71  8,895 -0.09 0.70 1.49 4.01 

2000 23,758 0.05 0.61 1.21 3.90  8,715 -0.14 0.71 1.50 4.05 

2001 22,951 0.01 0.58 1.14 3.70  8,398 -0.08 0.66 1.33 3.92 

2002 23,112 0.02 0.54 1.10 3.34  8,792 -0.09 0.63 1.30 3.72 

2003 23,000 0.03 0.50 1.08 2.92  9,251 -0.08 0.53 1.16 3.06 

2004 28,575 0.03 0.45 1.01 2.55  12,649 -0.07 0.49 1.11 2.75 

2005 31,182 0.05 0.45 1.05 2.56  14,263 -0.07 0.48 1.12 2.59 

2006 35,575 0.07 0.49 1.10 2.86  17,457 -0.05 0.47 1.10 2.57 

2007 32,877 0.07 0.44 1.03 2.37  16,178 -0.05 0.45 1.05 2.41 
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Table 3: Access to transportation and TFP distribution   

This table include all 1,935,707 plant*year during 1998-2007 that have the GIS location identified. We 
run the panel regression with the following specification: 

𝑙𝑜𝑔𝑇𝐹𝑃𝑖,𝑠,𝑡 − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠,𝑡

𝜎(𝐿𝑜𝑔𝑇𝐹𝑃)𝑠,𝑡
= 𝑎 + 𝛽𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑡 + 𝛾𝐷(> 100𝑘𝑚)𝑖,𝑡 + +𝛿𝑍 + 𝐹𝐸𝑝,𝑡 + 𝜀𝑖,𝑠,𝑡 

The dependent variable is logTFP adjusted by industry mean and standard deviation for each industry 
each year. In Panel A, B, and C, the industry-year mean are equal weighted, labor input weighted, and output 

value weighted. 

The explanatory variables are the plants’ distance, measured in km, to the nearest access/exist point of 
each type of surface transportation, an indicator for distance longer than 100km, firm size, age, ownership 

types, and province-year fixed effect. In the first row, each transportation type enters regression 

independently. In the second row, the regression specification include all transportation types together. ** 

and * respectively denote significance at the 1% and 5% level. 

Panel A: Industry-year equal-weight -adjusted log(TFP), unit in % of standardized deviation 

Distance to Motorway Railway Waterway National 
 Highway 

High Speed  
Railway 

Each transportation alone -2.00*** -12.50*** -4.00*** -17.77*** -1.77 
 [-4.46] [-14.24] [-8.76] [-14.84] [-1.05] 
All transportations together -1.80* -15.50*** -1.99*** -7.35*** 0.50*** 
 [-3.30] [-16.35] [-3.75] [-5.15] [2.80] 

 

Panel B: Industry-year labor-input-weight -adjusted log(TFP), unit in % of standardized deviation 

Distance to Motorway Railway Waterway National 
 Highway 

High Speed  
Railway 

Each transportation alone -2.85*** -18.41*** -3.78*** 17.17*** -0.12 

 [-7.33] [-24.04] [-10.14] [-17.58] [-1.28] 

All transportations together -2.36*** -18.69*** -2.33*** -4.92*** 0.49*** 

 [-5.03] [-20.34] [-5.26] [-4.09] [-7.87] 

 

Panel C: Industry-year output-value-weight -adjusted log(TFP), unit in % of standardized deviation 

Distance to Motorway Railway Waterway National 
 Highway 

High Speed  
Railway 

Each transportation alone -3.77*** -21.18*** -4.52*** -21.34*** 0.04 
 [-6.98] [-23.01] [-10.06] [-18.51] [-0.4] 
All transportations together -3.05*** -20.97*** -2.55*** -7.25*** 0.43*** 
 [-5.85] [-20.75] [-5.21] [-5.51] [-6.36] 
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Figure 3: Non-parametric approach: Distance and productivity 

Panel A presents the piece-wise coefficients from the non-parametric regression of productivity level on 

distance bin. The x-axis is the distance and y-axis is the industry-year adjusted productivity. 

𝑙𝑜𝑔𝑇𝐹𝑃𝑖,𝑠,𝑡−𝑙𝑜𝑔𝑇𝐹𝑃𝑠,𝑡

𝜎(𝐿𝑜𝑔𝑇𝐹𝑃)𝑠,𝑡
= 𝑎 + ∑ 𝛽𝑏𝑏 𝐵𝑖𝑛𝑖,𝑡,𝑏 + 𝛾𝐷(> 100𝑘𝑚)𝑖,𝑡 + +𝛿𝑍 + 𝐹𝐸𝑝,𝑡 + 𝜀𝑖,𝑠,𝑡 

 

Panel B presents the productivity heat map in year 2004. For each distance bin to the nearest motorway 

access, the map plots the mean of industry-year adjusted log(TFP) for all plants in the bin.  The TFP is 

categorized into 5 classes, with the warmest (coldest) colour denotes the highest (lowest) value. The black 

line is the motorway network existed in the same year.  
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Figure 4: TFP deviation by location and the location’s distance to transportation 

Panel A presents the piece-coefficients from the non-parametric regression in the location-year panel, in 
which the dependent variable is the average deviation (from its own industry-year mean) for all plants 

located in this location, 𝐷𝐸𝑉𝑙 =
∑ |log (𝑇𝐹𝑃𝑙,𝑖)|𝑖∈𝑙

𝑁𝑙
 , and the explanatory variable is the distance to the nearest 

access to motorway. The density of plants in the location and year fixed effects are controlled.   
∑ |log (𝑇𝐹𝑃𝑙,𝑖)|𝑖∈𝑙

𝑁𝑙
= 𝑎 + ∑ 𝛽𝑏𝑏 𝐵𝑖𝑛𝑙,𝑡,𝑏 + 𝛾𝐷(> 100𝑘𝑚)𝑙,𝑡 + 𝐹𝐸𝑝,𝑡 + 𝜀𝑙,𝑡 

 

 

Panel B presents the dispersion heat map in year 2004. The dispersion is the locational 𝐷𝐸𝑉𝑙  categorized into 

5 classes. The warmest (coldest) colour denotes the highest (lowest) value. The black line is the motorway 

network existed in the same year.  
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Figure 5: TFP distribution changes that are potentially related with transportation 

(I) By Industry characteristics 

  

(a)                                                                                          (b) 

  

(c)               (d) 

 

(e)        (f)   
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(II) By pre-existing conditions that are potentially related to transportations 

 

(g)                                                                          (h) 

 

                                    (i)                                                                               (j) 
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(III) By the change of access from 1998 to 2007 

 

(m)          (n) 

 

(o)        (p) 

  

(q)        (r) 
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Figure 5: Treatment and control samples 

 Treated are plants locates within 25km (or 5, 10,50km when distance threshold changes) to the 

access point to any new transportation additions in that year, condition on no previous access within 25km. 

Controls are plants that don’t experience any treatment, within 25km criteria, during the five years window 

of [t-2: t+2], condition on no previous access within 25km. 

In Panel A, we plot all treated and controls. In panel B, we plot matched treated and control.  Using 

regression Discontinuity Design (RDD), the treated and control are matched based on Year, province, and 

neighboring location. There are 1,779 treatments and 22,405 controls at the zip code level, of which 

1,440(*2) pairs matched. The motorways in 2010 is also added as a reference. 

Panel A: All treated and All controls 

 

Panel B: Matched treated and controls  
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Table 4: Transportation treatment effect on TFP and input, output growth, 

We define treatment with plants that gain new transportation access within 25 km in year t, conditional on 
there is no previous access within 25km.  The control plants are those without previous access within 25 km 
and didn’t experience any change in 25km in the past two and future two years [t-2, t+2], the matched for 
each treatment based on the same year, same province, and neighboring location. There are 1440(*2) pairs of 
treatment and control at the zipcode level, impacting 38,091 plants as treated, and 12,986 as control plants.  

The dependent variables are industry adjusted log(TFP) 𝑙𝑜𝑔𝑇𝐹𝑃𝑖,𝑠,𝑡 − 𝑙𝑜𝑔𝑇𝐹𝑃𝑠,𝑡  or 
𝑙𝑜𝑔𝑇𝐹𝑃𝑖,𝑠,𝑡−𝑙𝑜𝑔𝑇𝐹𝑃𝑠,𝑡

𝜎(𝐿𝑜𝑔𝑇𝐹𝑃)𝑠,𝑡
  dispersion 

of TFP 
∑ |log (𝑇𝐹𝑃𝑙,𝑖)|𝑖∈𝑙

𝑁𝑙
 , exiting and entries, and the growth of input and output in year t-2, t-1, t, t+1, and t+2, t+3 

respectively.   

The outcome variables are observed at the plant level. The control variables include the closest distance to all 
existing transportation modes, plant size, age, ownership, province-year fixed effect.  Panel A presents year to 
year changes. Panel B presents the 3-year changes around the treatment.  

Panel A: Year-by-Year changes in TFP, output, and input   Falsification tests of treatment effect 

 Ind-adj  
log(TFP) 

Ind-adj  
log(TFP)/ 𝜎 

Growth Q Growth M Growth  L Growth K 

t-2 0.29 0.34 -0.09* 0.02 -0.03 0.00 

 [1.61] [1.86] [1.86] [0.51] [0.80] [0.01] 

t-1 -0.11 -0.11 0.01 0.01 -0.07 -0.15** 

 [1.10] [1.06] [0.22] [0.16] [1.56] [2.10] 

t (treat) 0.14 0.12 0.02 0.03 0.12*** 0.12** 

 [1.23] [1.05] [0.73] [0.86] [3.71] [2.31] 

t+1 -0.18 -0.21 0.07*** -0.04 -0.03 0.03 

 [1.35] [1.60] [2.56] [0.92] [0.95] [0.73] 

t+2 0.24 0.26 0.01 0.09 -0.03 0.01 

 [1.20] [1.29] [0.41] [1.47] [0.85] [0.25] 

t+3 0.38 0.39 0.01 0.29*** 0.05 0.01 

 [1.69] [1.77] [0.18] [2.92] [0.91] [0.11] 

  

Panel B: Treatment effect measured by 3-years-changes from t-1 to t+2 

 Growth of 

Ind-adj 
log(TFP) 

Growth of 

Ind-adj 

log(TFP)/ 𝜎 

Growth Q Growth M Growth  L Growth  

K 

Changes from t-1 to t+2 

Treatment -0.27 -0.22 0.09* 0.10** 0.03 0.15* 

 [0.69] [-0.56] (1.66) (1.85) (0.73) (1.88) 

Changes from t to t+3 

Treatment -1.57 -1.36 0.25*** 0.22*** 0.18*** 0.14 

 [-0.27] [-0.22] (2.86) (2.55) (2.71) (1.17) 
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Table 5: Instrument events using historical routes 
 

This table presents the estimation of treatment effect with instrumental approach. In the first stage, 
we used the historical road access, road1962 and rail1962, to explain the transportation changes, in the 
shortest distance, occur in each treated location. We include the location’s distance to the nearest prefecture 
or country level city, whichever is closer. In the second stage, we use predicted distance of transportation 
changes to define treatment and control, and match them based on year, province, and location-neighbouring. 
The dependent variable in the 2nd stage takes the same as those in Table 4. The fixed effect, control variables 
as in Table 4, and those in the 1st stage are all included. Results are at the zip code level.  

Distance to new access = α + 𝛽1𝑅𝑜𝑎𝑑1962 + 𝛽2𝑅𝑎𝑖𝑙1962 + 𝛾𝑋 + 𝜀 
𝐿𝑜𝑔(𝑇𝐹𝑃) 𝑜𝑟 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑄, 𝐿, 𝑀, 𝐾 = α +  𝛽 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

+𝛽1𝑅𝑜𝑎𝑑1962 + 𝛽2𝑅𝑎𝑖𝑙1962 + 𝛾𝑋 + 𝐹𝐸 + 𝜀   (5) 
 

 Stage 1:  Stage 2: TFP in year t+1 
 Y=distance to new 

transportation 
access  

Industry-year 
adjusted 
log(TFP) 

Labor-weighted 
industry-year 
adjusted log(TFP) 

Output-weighted 
industry-year 
adjusted log(TFP) 

Predicted Treated  0.23*** 0.19*** 0.22*** 
  (3.49) (2.84) (3.29) 
log(Road1962) 0.69*** 0.00 0.00 0.00*** 
 (13.19) (0.44) (0.71) (5.18) 
Log(Rail1962) 1.03*** 0.00 0.00 0.00 
 (21.80) (0.72) (0.69) (0.34) 
Log(Distance to city) 1.35*** -0.01 -0.01 -0.01 
 (13.86) (-0.81) (-0.56) (-0.61) 
Province-Year FE Yes Yes Yes Yes 
R-square 0.16 0.10 0.09 0.10 
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Table 6: Asymmetric treatment effect at the plant level 

Reduction of dispersion comes from the shift of the both tails towards the center, which implies an aymmetic 

treatment effect depending on plants’ pre-event TFP. This table estimates of the piece-wise treatment effects 

on productivity, by categorizing treatment into four quartiles indicators based on the plants’ rank its 

industry-year adjusted TFP in year t-1. To have sufficient observations in all treatment distance cutoff, this 

tables uses all treatment, and all others as the redundant group. The dependent variable is the growth of TFP 

(industry-year adjusted and log value) between year t and t+3. The growth is computed as the difference 

divided by the simple average of year t and t+3. The standard errors are clustered at the zip code level.  * and 

** denote the significance level at the 1% and 5% respectively. 

Y= Growth of industry-adjusted TFP from year t to t+3 

Treated 5km  10km 25km 50km 
Bottom  0.38 -0.06*** -0.07*** -0.07*** 

 (0.01) (3.52) (5.99) (7.11) 

2nd Quartile 17.54 0.11*** 0.11*** 0.12*** 

 (0.63) (7.16) (9.94) (12.75) 

3rd Quartile 61.61* 0.07*** 0.07*** 0.08*** 

 (2.24) (4.62) (5.84) (8.27) 

Top  -7.44 -0.16*** -0.17*** -0.17*** 

 (0.27) (9.93) (13.35) (17.26) 

 

Table 7: Change of industry dispersion of TFP on change of average distance to transportation 

The equal weighted average distance are measured as equation (10a) and (10c). The value weighted average 

distance are measured as equations (10b) and (10d) and with labor input and shipment output as the 

weights, respectively. Both the changes of distance and the changes of TFP dispersion are measure over the 

period [t-2: t]. Coefficients and t-statistics are reported. ** and * denote significance at the 1% and 5% levels 

respectively.  

 Y:  ∆𝑡−2:𝑡
𝑠 𝑉𝑎𝑟(log (𝑇𝐹𝑃𝑠𝑖)^0.5  (scaled in %) 

Distance to ∆𝐴𝐷𝑡−2,𝑡
𝑠  ∆𝑙𝑊𝐷𝑡−2,𝑡

𝑠  ∆𝑞𝑊𝐷𝑡−2,𝑡
𝑠  

Fixed spatial distribution 

Trunkway 0.09 0.08 0.25 
 [0.48] [1.07] [1.40] 
Railway 14.82 -4.54 -8.98 
 [0.64] [-0.20] [-0.36] 
High-speed railway 0.02** 0.01*** 0.02** 
 [2.18] [3.44] [1.97] 

Varying spatial distribution 

Trunkway 0.04 -0.04 0.15 
 [1.55] [-1.23] [1.00] 
Railway 0.95*** 1.00*** 0.82*** 
 [15.04] [4.17] [22.02] 
High-speed railway -0.01 -0.02 -0.03 
 [-0.90] [-0.92] [-1.43] 
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Table 8: Entry and exit of manufacturing plants by location in the distribution of own-industry’s total 

factor productivity, 1998-2007. 

The treatment plants are those that located within 25km of any kind of transportation treatment point. The 
control plants are those that don’t experience in any in [t-2,t+2], matched 
 

Panel A: Plant exit probabilities in the first two years post transportation treatment (logistic specification) 
Location in own-industry TFP 
distribution as of the Year t-1 

Probability of plant exit by year t+2 
(marginal effect) 

P-value for difference 
between the treated and 
controls 

 Treatment Control  
Bottom Quartile 0.24 0.34 0.16 
2nd 0.16 0.21 0.31 
3rd 0.18 0.26 0.12 
Top 0.17 0.20 0.74 

 

Panel B: Plants in operation in Year t+3 
Location in Own-Industry TFP 
Distribution as of the Year t+3 

Probability of Plant in operation t+3 
enter the market in year t+2 or year t+1 

P-value for Difference 
Between the Treated and 
Controls 

 Treatment Control  
Bottom Quartile 0.10 0.08 0.07 
2nd 0.13 0.11 0.01 
3rd 0.14 0.10 0.09 
Top 0.13 0.14 0.00 

 

Panel C: Comparison with matched treated, all control, and non-treated/control 
   
 Treatment All controls Non-treated/control 
Exit rate by year t+2 0.07 0.09 0.03 
            p-value of difference (0.00) (0.00)  
Enter rate in year t+1 and t+2  0.06 0.07 0.04 
             p-value of difference (0.00) (0.00)  
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Table 9: Plant TFP by status, 1998-2007  

In this table we analyze plant TFP and the changes on their operational status in year t+2, where t denotes the 
treatment year. The regressions in panel A, B, C respectively are the following three specifications.  TFP are 
mean-adjusted log(𝑇𝐹𝑃𝑖𝑡) within each industry-year cell. 
 

(a)    𝑇𝐹𝑃𝑖𝑡 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) + 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸 + 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝜀; 
(b)   𝑇𝐹𝑃𝑖𝑡+2 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) + 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸 + 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝜀 
(c)  growth rate of TFP from year t to t + 2 = 𝑓(𝑝𝑙𝑎𝑛𝑡′𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 + 2, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)  +

𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝐹𝐸 + 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑌𝑒𝑎𝑟 𝐹𝐸  
 
 

Panel A: TFP in Year t by Plant Status in Year t+2 
Dependent Variable: Plant level 
Log TFP in Year t 

Treatment Control P-value for Difference 
Between the Treated and 
Controls 

Continuous 0.31*** 
(0.00) 

0.24*** 
(0.00) 

0.07 
(0.23) 

Exits -0.26*** 
(0.01) 

-0.10 
(0.38) 

-0.16 
(0.23) 

R-Squares 0.15   
 

Panel B: TFP In Year t+2, Two Years After treatment, by Plant Status in Year t+2 
Dependent Variable: Plant-level 
Log TFP in Year t+2 

Treatment Control P-value for Difference 
Between the Treated and 
Controls 

Continuous 0.53*** 
(0.00) 

0.37*** 
(0.00) 

0.06** 
(0.03) 

New Entrants 0.44*** 
(0.00) 

0. 40*** 
(0.00) 

0.04 
(0.78) 

R-Squares 0.17   
 

Panel C: : Change in Plant-level TFP from Year t to t+2 for continuers 
Dependent variable: growth of 
Log(TFP) adjusted by mean within 
each industry-year cell 

Treatment Control P-value for Difference 
Between the Treated and 
Controls 

Continuous 0.15 
(0.46) 

0.45** 
(0.04) 

0.30* 
(0.08) 

R-Squares 0.02   
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Table 10: The impact of Transportation improvement on TFP in the manufacturing sector, 1998-2007.   

The computation method follows Davis et al (2014).  We first compute the average two-year change 

in TFP for all plants, treated plants, and control plants respectively. TFP is demeaned within each industry-

year cell.  

∆𝑇𝐹𝑃𝑡:𝑡+2 = (𝑆𝑡+2  
𝑐 𝑇𝐹𝑃𝑡𝑡+2

𝑐 − 𝑆𝑡  
𝑐 𝑇𝐹𝑃𝑡𝑡

𝑐) +  (𝑆𝑡+2  
𝑁 𝑇𝐹𝑃𝑡𝑡+2

𝑁 − 𝑆𝑡  
𝑥 𝑇𝐹𝑃𝑡𝑡

𝑥)  

S is the employment share, and C, N, X denote continuers, new entry and exiters. 

We then compute the difference-in-difference, the change of TFP in the treated plants as the 

deviation from the TFP from the controlling plants over the same period ∆𝑇𝐹𝑃𝑡:𝑡+2
̃  

∆𝑇𝐹𝑃𝑡:𝑡+2 − ∆𝑇𝐹𝑃𝑡:𝑡+2
̃

= (𝑆𝑡+2  
𝑐 (𝑇𝐹𝑃𝑡𝑡+2

𝑐 − ∆𝑇𝐹𝑃𝑡+2
𝑐 ) ̃ − 𝑆𝑡  

𝑐 (𝑇𝐹𝑃𝑡𝑡
𝑐 − ∆𝑇𝐹𝑃𝑡

𝑐) ̃ )

+  (𝑆𝑡+2  
𝑁 (𝑇𝐹𝑃𝑡𝑡+2

𝑁 − ∆𝑇𝐹𝑃𝑡+2
𝑐 ) ̃ −  𝑆𝑡+2

𝑁̃ (𝑇𝐹𝑃𝑡𝑡+2
𝑁 − ∆𝑇𝐹𝑃𝑡+2

𝑐 ) ̃ − 𝑆𝑡  
𝑥 (𝑇𝐹𝑃𝑡𝑡

𝑥 − ∆𝑇𝐹𝑃𝑡
𝑐) ̃

+ 𝑆𝑡
𝑋̃(𝑇𝐹𝑃𝑡𝑡

𝑥 − ∆𝑇𝐹𝑃𝑡
𝑐) ̃  )  

 

Panel A: Estimated Average Change in TFP  
 1998-2007 2-year average 
TFP Log Change Differential  20.81% 3.06% 
Continuing Establishments  9.63% 2.31% 
Entry and Exit  11.18% 0.75% 

 

Panel B: Estimated Average Two-Year Post-event Change in TFP:  Treated, Control, and Others 
 Treated Control Others 
TFP Log Change Differential  2.49% 2.46% -0.002% 
Continuing Establishments  -4.70% 3.87% -3.31% 
Entry and Exit  7.19% -1.41% 3.31% 
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Appendix A: The technical notes for China’s transportation network in GIS and summary of coverage.  

I. Definitions of transportation system included in the data 

 (1). National Motorway description  

In a strict definition, national trunk way is the newly built part of National highway after 1992 with the 

highest speed limit among all national highways. By January 2014, the total length is 85,000km.  It is longest 

national trunk way in the world. The speed limit could be as high as 120km/hour. It have at least 2 lanes in 

each direction of traffic. The data section of the paper includes an overview of its construction timeline. The 

national and provincial trunk highway network connects administrative regions at and above the county level 

nationwide. 

(2). National highway 

There is a total length of 96,000km National Highway (not include National Motorway) in China. In the east 

and coast region of China, most of the national highway have 2 by 2 lanes or 3 by 3 lanes and a speed limit to 

60-100km.  In the middle and west China, the national highway often have 2 by 2 or 1 by 1 tertiary highway 

with speed limit as low as 20km/hour. 

(3). Railway 

China started to build railway system since Qing Dynasty 1892. It currently has the 2nd longest railway 

coverage in the world, 121,000km including both passenger and freight, ranked after USA. However, the 

railway length/population ranks behind 100 in the world. The railway system, aside from the High-speed 

railway, have two grades: railway and fast-speed railway. The latter refers to trains (both passenger and 

freight) with average speed between 160km/hour to 250km/hour with current 40,000km in total length.  

 (4). High speed railway 

    The high speed railway is developed after 2004.  We have data on when each section of the high speed 

railway is launched up to 2014 and GIS map of all the high speed railway and its stations in operation by 

January 2014, which covers 19,000km in length. It is the longest high-speed railway coverage in the world. 

High-speed railway in China defined in China currently include passenger trains only. The average speed is no 

less than 250km/hour. The highest speed could reach 605km/hour.  

(5) Waterway 

By the end of 2015, China had 31,300 quay berths for production use. Inland waterways’ navigable length 

was 127,000 km, with graded waterways accounting for 52.2 percent, and the length of high-grade 

waterways reaching 13,600 km. Our waterway data include all inner land and coastal lines that navigable for 

ships. The GIS map include these waterways and the ports for coastal lines.    
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II: Coverage 

We have all the National Motorway in GIS map from 1993-2014 and year by year changes. The GIS map year 

is the year the map is published. The information presented should be treated with 2-3 years of lag to proxy 

for the actual timing of the transportation existence. By matching the GIS data observations and the highway 

construction completion data announced by the Ministry of Transportation, we recommend treating the data 

with 2 years of lag after 2002 and 3 years of lag before 2002.  

We have the National highway map as in the year 1993. The actual locations of these roads remain mostly 

unchanged from 1993-2014. There are major improvements of these roads, including being partially 

integrated into a part of the National Motorway. Smaller improvement however are not captured by our data. 

The length mentioned earlier is the expressway portion. There are also rural highways. The total length was 

3.98 million km, connecting 99.9 percent of towns and townships and 99.8 percent of administrative villages 

as of 2016. Our maps include rural highway as long as they are part of the national highways.  

We have data for all the railways and their stations exist in the year 2014 in GIS map, and the data on the 

timing and location for major railway additions and the speed improvement since 1950.  Our data however 

cannot differentiate passenger versus freight trains by railway sections. 

The railway additions and speed improvement are compiled based on the information published by The 

Ministry of Transportation on the actual data/year of the changes. 

The data of high-speed railway introduction are also compiled based on the information published by The 

Ministry of Transportation on the actual data/year of the changes. 

Our waterway data are based on the 1994 map. China has improved the navigation conditions of the Yangtze 

and Xijiang rivers and the Beijing-Hangzhou Grand Canal, and formed an inland waterway system composed 

of two horizontal trunk waterways, one vertical trunk waterway, two high-grade waterway networks and 18 

high-grade mainstream and tributary waterways. These waterways exist in the database as their condition in 

1994, without the improvement as a treatment. As we don’t know the low boundary for the waterways to be 

included in the “navigable” definition, our analyses exclude those with a capacity of 100 tons capacity or 

below, just to have a clear definition. 

We have not incorporated terrain map to cover the difference of sea-level heights between plants and 

exit/entrance or complication of the terrain. Our surface transportation data don’t include airway, oil and gas 

pipelines. 
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III. Coverage description in maps  

Figure A1: The Development of China’s Surface Transportation System  

A. National Trunk Highways, 1993 
 

 

B. National Trunk Highways, 2013   
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C. High-Capacity Freight and High-Speed Passenger Railway Lines, 1993 

  

 

D. High-Capacity Freight and High-Speed Passenger Railway Lines, 2013 
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E. National highway, 1993 

 

F. Major Navigable Waterways, 1993 

 

Note: The green ones are waterway and coastway with ship capacity 100tons and above. The blue ones has 

shop capacity less than 100 tons. We exclude the blue ones in the analysis.  
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IV: Description of the Transportation Network on Coverage and Changes from the perspectives of 

Geographic coverage measured by zip codes.  

Table A1: The coverage of the transportation network summarized by Zip Codes 

The sample has a total of 34,889 unique zip codes. Panel A reports the percentage of zip codes whose center point is 

less than 25km away from the nearest access point to each transportation mode. Panel B reports the average distance 

from zip code center the nearest access point to each transportation mode.  

Panel A: Portion of Zip Codes with nearest access less than 25km  

 Motorway Railway 

High Speed 

Railway 

National 

highway 

Water 

way 

1995 0.12 0.53  0.71 0.52 

1996 0.15 0.54  0.71 0.52 

1997 0.18 0.54  0.71 0.52 

1998 0.20 0.54  0.71 0.52 

1999 0.22 0.54  0.71 0.52 

2000 0.26 0.54  0.71 0.52 

2001 0.31 0.54  0.71 0.52 

2002 0.38 0.54  0.71 0.52 

2003 0.38 0.54 0.01 0.71 0.52 

2004 0.40 0.54 0.01 0.71 0.52 

2005 0.44 0.55 0.01 0.71 0.52 

2006 0.49 0.55 0.01 0.71 0.52 

2007 0.55 0.55 0.01 0.71 0.52 

2008 0.58 0.55 0.02 0.71 0.52 

2009 0.60 0.55 0.06 0.71 0.52 

2010 0.61 0.56 0.10 0.71 0.52 

2011 0.63 0.56 0.14 0.71 0.52 

2012 0.65 0.56 0.17 0.71 0.52 

 

 

  



58 
 

Pane B: Average Distance from zip center to the nearest access (km) 

 Motorway Railway 

High Speed 

Railway 

National 

highway 

Water 

way 

1995 298.89 38.81  19.64 108.87 

1996 216.52 38.71  19.64 108.87 

1997 179.25 38.61  19.64 108.87 

1998 175.09 34.66  19.64 108.87 

1999 160.99 34.28  19.64 108.87 

2000 147.11 34.28  19.64 108.87 

2001 129.17 34.26  19.64 108.87 

2002 73.85 34.26  19.64 108.87 

2003 73.61 34.24 1299.95 19.64 108.87 

2004 70.86 34.23 1299.95 19.64 108.87 

2005 61.77 34.01 1299.95 19.64 108.87 

2006 55.70 34.01 1299.95 19.64 108.87 

2007 50.37 34.01 1299.95 19.64 108.87 

2008 46.50 34.01 594.55 19.64 108.87 

2009 41.05 33.54 304.31 19.64 108.87 

2010 39.02 33.27 268.99 19.64 108.87 

2011 34.68 33.12 256.30 19.64 108.87 

2012 33.05 33.02 222.39 19.64 108.87 
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Table A2: The coverage of transportation treatment (using 25km buffer) summarized by Zip Codes 

Using 50km as the threshold of access to transportation improvement of any kind, 29,460 out of the total 34,889 zip 

codes, are affected during 1993-2012.  Panel A reports the number of affected zip code by year and the percentage 

of them whose affected access fall into even a short distance.  Panel B reports the number of affected zip codes 

using the 25km threshold and the percentage of them affected by each transportation mode changes.  

 Total  Treat50k Treat25k Treat20k Treat5k 

1993 2,307 1 0.47 0.20 0.10 

1994 3,282 1 0.45 0.18 0.08 

1995 2,428 1 0.44 0.18 0.07 

1996 2,993 1 0.52 0.20 0.09 

1997 10,,908 1 0.61 0.28 0.16 

1998 11,089 1 0.60 0.31 0.18 

1999 10,293 1 0.49 0.18 0.07 

2000 4,768 1 0.60 0.33 0.20 

2001 8,112 1 0.60 0.30 0.17 

2002 5,971 1 0.43 0.16 0.06 

2003 6,840 1 0.48 0.20 0.09 

2004 9,343 1 0.51 0.22 0.12 

2005 11,926 1 0.53 0.19 0.08 

2006 6,604 1 0.39 0.10 0.03 

2007 14,760 1 0.58 0.29 0.17 

2008 7,586 1 0.48 0.16 0.07 

2009 8,455 1 0.59 0.31 0.19 

2010 6,174 1 0.65 0.32 0.18 

2011 27,849 1 0.74 0.41 0.22 

2012 6,691 1 0.63 0.30 0.16 
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  Total  NewTrunk25k NewRail25k RImpr25k NewHi25k 

1993 2307 0.47 0.00 0.00 0.00 

1994 3282 0.45 0.00 0.00 0.00 

1995 2428 0.32 0.13 0.00 0.00 

1996 2993 0.29 0.24 0.00 0.00 

1997 10908 0.30 0.07 0.32 0.00 

1998 11089 0.22 0.03 0.40 0.00 

1999 10293 0.48 0.00 0.00 0.00 

2000 4768 0.06 0.00 0.55 0.00 

2001 8112 0.09 0.06 0.48 0.01 

2002 5971 0.43 0.00 0.00 0.00 

2003 6840 0.37 0.11 0.00 0.03 

2004 9343 0.27 0.02 0.24 0.00 

2005 11926 0.35 0.21 0.00 0.00 

2006 6604 0.39 0.00 0.00 0.00 

2007 14760 0.21 0.00 0.44 0.00 

2008 7586 0.21 0.27 0.00 0.08 

2009 8455 0.13 0.49 0.00 0.17 

2010 6174 0.08 0.59 0.00 0.23 

2011 27849 0.73 0.14 0.00 0.06 

2012 6691 0.00 0.60 0.00 0.27 

 

 

 

 

 

  



61 
 

Table A3: Year distribution of treatment sample (within 50km of new exit/entrance points)  

This table presents year-by-year the number of plants that locate within 50km of a new addition to or 

improvement in transportation system.  

Year Treatment of 

any one of the 

four kinds 

Motorway 

additions 

High-speed 

Railway 

Additions 

Railway 

Additions 

Railway 

Speed/improvement 

1998 66,515 24,926  4,855 48,918 

1999 75,609 75,567  42  

2000 30,066 3,927   26,570 

2001 55,477 9,299 1,676 4,970 43,159 

2002 49,260 49,260    

2003 58,020 53,628 2,375 5,263  

2004 93,113 50,401  623 51,139 

2005 92,128 91,631 1,832   

2006 58,581 58,581    

2007 177,818 103,633   141,120 

Total 756,587 520,853 5,883 15,753 310,906 
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Appendix B: Description of TFP of Chinese manufacture firms of their change over the sample period 

Figure B1: TFP Distribution overview 

(I) Full sample 

  

(a)                                                                                          (b) 

(II) By ownership  

  
(c)                                                                                                    (d) 

  
(e)                                                                                              (f) 
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(g)                                                                                                  (h) 

 

(V): By export 

  
(i)                                                                                               (j) 

 

  
(k)                                                                                                (l) 
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Table B2: Comparison of TFP distribution by access to and reliance on the transportation system 

In this table, we contrast the trend of productivity distribution over time between groups of plants that are 

categorized by their access to or reliance on the transportation system.  As we compare cross industries, we first 

adjust log(tfp) by industry mean for each industry and each year.  

In panel A, we contrast two groups. One that has access to well integrated transportation system at both the 

beginning and the end of the sample period, but the other only at the end of the sample.  We define a plant has 

access to a well-integrated transportation system, if it is within at least one of the four geographic buffers of 25km of 

highway or railway roads, 10km buffers for the old national roads or waterways.  In panel B, we contract two 

groups: one for industries have high value over weight ratio and the other low value over weight ratio. We choose 

Gold, silver mining (921, 922), cigarette tobacco product (1620, 1690), silk product (1754, 1763), leather and fur 

product (1921, 1922, 1923, 1932), cosmetic and fur product (2672, 2674) industries as the former and Ore mining 

(933), tobacco stemming and redrying (1610), stone quarrying and mining (1011, 1012, 1013), wood and bamboo 

furniture (2110, 2120) as the latter.  

Panel A: Plants with integrated transportation at the beginning of the sample period versus none 

 

Plants with integrated transportation 

at the beginning of the sample period (64%)  

Plants with no integrated transportation 

at the beginning of the sample period (36%) 

 

Unadjusted 

log(TFP) 

Dispersion of log(TFP) 

 adjusted by industry mean  

Unadjusted 

log(TFP) 

Dispersion of log(TFP) 

adjusted by industry mean 

Year Mean STD P99-P1 P90-p10  Mean STD P99-P1 P90-p10 

1998 0.92 0.46 2.84 0.97  0.93 0.48 2.84 1.07 

1999 0.88 0.46 2.70 1.01  0.90 0.44 2.65 0.95 

2000 0.90 0.49 2.95 1.05  0.95 0.47 2.83 1.00 

2001 0.88 0.44 2.60 0.97  0.92 0.39 2.29 0.84 

2002 0.91 0.44 2.51 0.96  0.95 0.39 2.34 0.85 

2003 0.91 0.40 2.26 0.92  0.95 0.36 2.02 0.82 

2004 0.90 0.38 2.06 0.89  0.93 0.34 1.83 0.80 

2005 0.94 0.37 1.99 0.87  0.99 0.35 1.85 0.82 

2006 0.97 0.36 1.95 0.85  1.02 0.35 1.84 0.82 

2007 0.98 0.34 1.78 0.83  1.05 0.34 1.75 0.82 

2007-1998 0.06 -0.12 -1.06 -0.14  0.12 -0.14 -1.05 -0.25 

Panel B: Industries with High ratio of value/weight in transportation cost versus Low 

 High value/weight industries  Low value/weight industries 

 Industry 

Dispersion of log(TFP) 

 adjusted by industry mean  Industry 

Dispersion of log(TFP) 

adjusted by industry mean 

Year Mean STD P99-P1 P90-p10  Mean STD P99-P1 P90-p10 

1998 0.97 0.66 3.36 0.89  1.03 0.73 4.14 1.03 

1999 0.87 0.63 3.29 0.83  0.99 0.57 3.46 0.96 

2000 0.96 0.63 4.14 0.92  1.00 0.65 4.04 1.13 

2001 0.92 0.62 3.32 0.76  0.97 0.55 3.27 0.87 

2002 0.95 0.61 3.44 0.72  0.96 0.67 3.45 0.92 

2003 1.00 0.51 2.94 0.69  0.99 0.55 2.96 0.87 

2004 1.03 0.46 2.39 0.64  0.99 0.43 2.45 0.76 

2005 1.09 0.41 1.98 0.65  1.06 0.52 2.65 0.78 

2006 1.13 0.60 2.19 0.69  1.07 0.43 2.12 0.77 

2007 1.17 0.34 1.78 0.64  1.15 0.48 2.27 0.79 

2007-1998 0.20 -0.32 -1.58 -0.25  0.12 -0.25 -1.88 -0.24 
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Figure B3: Contrast of TFP distribution from 1998 to 2007 

Graph (a) uses concrete industry as an example, include plants in cement (3121, 3123, 3124), brick, tile and 

stone construction materials (3129, 3131, and 3133), but exclude part of cement industry (3111, 3112, 3122, 

and 3132) because of dramatic fluctuation in these industry codes’ sample size.  Graph (b) contrast the 

distribution of industry-adjusted log(TFP) for the full sample; (c) Plants without access within 20km in 1998; 

(d) Plants with road access within 20km in 1998; (e) High value/weight industries; (f) Low value/weight 

industries. 

 

(a): Concrete example     (b): Full sample, industry-adjusted 
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(c): Plants without access within 20km in 1998   (d): Plants with road access 

within 20km in 1998 
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(e) High value/weight industries     (f) Low value/weight industries  
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Figure B4: TFP and dispersion over time by region 
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